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1. Introduction

An explosive model has recently been designed and added to MACH2 to enable
that code to be used as a tool for studying explosive magnetic flux compression
generators. This report describes this model and gives examples of its use in both
one- and two-dimensional simulations. Section 2 will provide a description of the
model. One-dimensional simulations will be discussed in Section 3. Section 4 will
show examples of two-dimensional simulations. Appendices contain input decks for

the one- and two-dimensional simulations and a listing of the modifications made to
MACH2 for this purpose.

2. The Dynamic Explosive Model

Models useful for computational modeling of detonations have been under con-
tinuous use and development for decades. They have achieved a high degree of so--
phistication, and are capable of predicting experimental results with quite adequate
accuracy. However, such models have not yet found wide use in multidimensional
MHD codes. As the behaviors of primary interest in an explosive magnetic flux
compression generator are those of the detonating driver and of the compressing
magnetic field, an MHD code with an explosive model is potentially of great value
for designing such devices.

The intent of this effort was not to produce a new explosive model, nor to endow
MACH?2 with the most sophisticated state-of-the-art model available. Rather, the
intent was to outfit MACH2 in the most expedient means possible with a simple
model that would allow it to simulate the basic features of a detonating explosive.
Thus, the primary concerns guiding the design reported here were (1) that the
model be capable of reproducing the essential qualitative behavior of an explosive
and provide some degree of control over the quantitative behavior, and (2) that
the model be compatible with the existing structure of MACH2. The qualitative
features which were considered essential were that the explosive exhibit a threshold
behavior i.e. that it not detonate unless sufficiently perturbed, that the process
of detonation release a set amount of energy which would then be available to
drive on the detonation, and that once material had detonated, it would not be
able to detonate again. Quantitative features deemed important to match were the
pressure in the newly detonated material and the propagation speed of the detonation
wave. With respect to the structure of MACH2, the goal was to produce a modular
package that could fit into the existing multiblock, arbitrary Langragian-Eulerian
MHD algorithms without requiring that they be modified extensively.

The model used here is an adaptation of a technique proffered by Dr. G.
McCall of Los Alamos National Laboratory. The essence of the technique is to
define a set of conditions under which undetonated material will detonate, then to




monitor the conditions in each undetonated cell until the chosen conditions are met.
Once that occurs, the value of the internal energy of that cell is incremented by a
certain amount, and the material is marked as detonated. The detonation conditions
suggested by McCall are (1) the artificial viscosity in the given cell is decreasing and
(2) the internal energy in the cell exceed a critical value. These conditions will now
be described in greater detail.

Artificial viscosity, denoted here as ¢, is a numerical technique used predomi-
nantly in Lagrangian calculations to enhance the numerical stability of the hydro-
dynamics algorithm in the presence of a shock wave. Without artificial viscosity,
hydrodynamic quantities tend to oscillate wildly behind a shock transition. The
stabilizing nature of ¢ is effected by modifying the momentum equation to read

d 1
g = —_ 1
e pV(p-{—q), | | (1)

where the hydrodynamic pressure has been augmented by the inclusion of the
artificial viscosity, ¢q. Recipes for calculating ¢ abound, but most share the feature
that ¢ is zero unless the cell is under compression, in which case ¢ is set to a positive
value tied to the local gradient of the fluid velocity. MACH2 uses the following
recipe:

(o if V-5<0 (%)

T=Vppdi3(V %) if V-9>0 '

where ; is a dimensionless input constant, typically near unity in value, p is the
mass density, and dl is the cell size. Strong shocks are characterized by a value of
g equal in magnitude to p. Numerically, the density ahead of a shock increases for
several cells, telegraphing the arrival of the shock. The size of this precursor zone
can be controlled by the parameter x, but the point is that in this region, since it is
undergoing some degree of compression, ¢ has a nonzero value. In fact, ¢ increases
over several orders of magnitude in this transition region, until it is comparable to
the peak pressure. Behind this point, that is, on the upstream side of the shock,
g decreases over a few cells until the shock compression is over. Thus, the point
at which ¢ begins to decrease is a useful indicator for the peak of the shock, and
motivates its use as part of the detonation criteria.

A decreasing value of g is not alone sufficient to provide a useful detonation cri-
terion. Density gradients can diffuse numerically at the grid speed, ¢, = % leading
to very small compressions and hydrodynamically insignificant nonzero values of 4.
Thus, keying on decreasing values of ¢ alone would lead to a detonation wave whose
speed would be determined by the local grid speed, and would occur in response to
the most minute of perturbations. However, imposing the simultaneous requirement
that the cell’s internal energy exceed a critical value has the effect of filtering out
these uninteresting and unimportant compressions. The precise value of the critical
energy density depends on the explosive being modeled. Likewise, the value of the




internal energy to which to boost a detonating cell depends on the material being
modeled. We found that a critical energy density of 5x10% J/m3 and a detonation
energy density of 5x10% J/m3 allowed detonation speeds and pressures comparable
to those reported for many high explosives to be obtained in the simulations.

Once the material in a cell has detonated, it is crucial to tag it in some way so
that it cannot detonate again. MACH2 has a convenient method for doing this, but
its use requires that the following restrictions be followed. A block containing the
explosive must consist entirely of the explosive. Only one type of explosive is allowed.
Each explosive block must be entirely Lagrangian, and the boundaries of such blocks
must also be entirely Lagrangian. Finally, as the designation of explosive material
as detonated or not detonated makes use of MACHZ2’s multimaterial capability, this
capability is effectively disabled in explosives calculations. Once the material in
a cell has detonated, its value for the variable con2 is changed from zero to one.
This instructs the equation of state routine to use a different equation of state for
the detonated material than for the undetonated material. As the calculation is
required to be entirely Lagrangian, the contents of any given cell do not mix with
those of its neighbors. This insures that once a material has detonated, it will not
flow into a region of undetonated material and contribute more than once to the
ongoing explosion.

The equation of state used here for the detonated material is the Gruneisen
equation of state. This is an analytic formulation wherein the pressure is determined
by the expression

(1-3T+1)+3iT+1) p

L-dc-v(-2)] /o, 3
”—;]( )

p="Tpe + poc [

where ¢ is the specific internal energy, p is the mass density, I' is the Gruneisen
coefficient, p, is the reference density, and ¢, is the reference sound speed. Numerical
tests show that the parameters I and ¢, have some degree of influence over the speed
of the propagating detonation wave. In tamped 1-d tests, with a reference density
of 1.894 x 10 kg/m?®, an initial internal energy density of 0.267 x 10 J/m3, and
a detonation energy release of 5.0 x 10% J/m3, the speed of the detonation wave
for ¢, = 0.141 cm/us was observed to increase from 0.527 cm/us to 0.638 c/us as T’
increased from 2.0 to 2.37. For T fixed at 2.0, the detonation wave speed increased
from 0.492 em/us to 0.550 em/us as ¢, varied from 0.01 em/us to 0.282 em/us. Thus,
these two parameters allow the detonation speed to be tuned, giving the user some
degree of control over the detonation characteristics.

The effects of different detonation initiation schemes have not yet been studied
here in any great detail. The initiation method used to date has been a simple,
but somewhat artificial, method wherein a chosen group of computational cells is




assumed to be undergoing detonation just as the computation starts. This is done by
giving to these cells just enough internal energy to insure that their internal energy
density exceeds the critical value. Their artificial viscosity is also adjusted by setting
the old values of ¢ to 2 and the new values to 1. This insures that in these chosen
cells, ¢ appears to be decreasing, and thus allows the detonation criterion to be met.

3. One-Dimensional Demonstration

One-dimensional tests afford a quick and convenient means of surveying the
characteristics of the detonation model. The 1d demonstration reported here used 20
cells to span a distance of 20 cm. The initial conditions were a uniform distribution of
mass with density 1.894 x 102 kg/m3, temperature of 0.025 eV (room temperature),
and zero flow velocity. The Gruneisen parameters I' and ¢, had values 2.37 and
0.141 cm/us, respectively. The detonation was initiated at the right and propagates
to the left. Boundary conditions at both the right and left represented impenetrable,
immobile walls so that this was a tamped detonation.

Figures 1, 2, 3, 4, and 5 show the mass density, the temperature, the pressure, the
detonated material tag, and the flow speed, respectively at t = 10 us. The detonated
material tag has a value of 0 for undetonated material and a value of 1 for detonated
material. Plots of these same quantities at t = 22.5 us are shown in Figures 6, 7,
8, 9, and 10. -
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Figure 2 Temperature at 10 us.
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Figure 3 Pressure at 10 us.
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EXPIOSIVE MODEL: 1D DEMO
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Figure 5 Flow speed at 10 us.
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Figure 6 Mass density at 22.5 pus.




EXPLOSIVE MODEL: 1D DEMO 1=EXPL
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Figure 7 Temperature at 22.5 pus.
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Figure 8 Pressure at 22.5 pus.
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Figure 9 Detonated material tag at 22.5 us.
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Figure 10 Flow speed at 22.5 us.




4. Two-Dimensional Demonstration

Figure 11 shows the grid used for the two-dimensional demonstration. The
geometry is cylindrical with radius increasing from left to right and axial distance
increasing from bottom to top. The region from the left hand boundary at r = 10 cm
to r = 15 cm is a void region. The thin layer of cells from r =15 cm to r = 16 cm
represents an aluminum armature. The SESAME tables are used for the aluminum
equation of state. The region from r = 16 cm to r = 20 em contains the explosive
material. The parameters describing the explosive are identical to those used in
the one-dimensional demonstration reported above. The detonation is initiated in
the row of explosive cells at the top of the grid plot. An azimuthal magnetic field
is present in the void region. The field has a maximum value of 1 T at the inner
radius of the void region and decreases as 1/r. A return current flows on the inner
surface of the armature; there is initially no magnetic field in either the armature
nor the explosive.

Figures 12, 13, 14, and 15 show grid, fluid velocity, magnetic field, and internal
energy density at t = 10 us. At this point, the detonation is well under way; the
portion of the armature nearest the initiation region has been accelerated to a speed
of approximately 0.167 cm/us. Figures 16, 17, 18, and 19 show the same quantities
plotted at t = 20 us, figures 20, 21, 22, and 23 at t = 30 us. Averaged over the 30 usit
has taken the detonation wave to cross the simulation domain, the detonation speed
is 0.67 cm/us. On this time scale, the armature acts as a conductor, sweeping up the
magnetic flux contained between it and the inner conductor. Some magnetic field
does penetrate into the armature, but essentially none diffuses completely through it.
The void region has been reduced in area by roughly a factor of two at t = 30 us. This
corresponds to the approximate doubling observed in the magnetic field intensity.
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MNODEL:TAB NEW-AL 8.8.1
T = 1.000E-11 CYCLE, = 0
CALCULATION MESH

1ST X = 1.00E-01
X INC = 2.00E-02
1ST Y = 0.00E+00
Y INC = 5.00E-02

Figure 11 Initial simulation grid for two-dimensional demonstration.
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NODEL:TAB NEW-AL 8.8.1
T = 1.000E-05 CYCIE = 114
CALCULATION MESH

1ST X = 1,00E-01 ‘ u i

X INC = 2,00E-02 \ \

13T Y = 0.00Z+00 ‘ \
Y INC = 5.00E-02

Figure 12 Simulation grid at 10 ps.

MODEL:TAB NEW-AL 8.8.1
T = 1.000E-05 CYCLE = 114
VELOCITY
a3
MAX = 2_.282E+03

Figure 13 Fluid velocity at 10 pus.
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MODEL:TAB NEW-AL B.8.1
T = 1.000E-05 CYCLE = 114
TOROIDAL MAGNETIC FIELD

~= 7.4E-07 B= 1.9E-01 D= 3.5E-01

¥= S.8E~01 H= 7.8E-01 4= 9.7E-01

Figure 14 Azimuthal magnetic field at 10 gs.

MODEL:TAR NEW-AL 8.8.1
T = 1.000E-05 CYCLE = 114
SPEC. INT. ENERGY

~= 2.6E+05 B= 5.1E+05 D= 1,.0E+06
F= 2.0E+06 H= 3.8E+06 += 7.4E+06

Figure 15 Internal energy density at 10 us.

13




MODEL :TAB NEW-AL 8.8.1
T = 2.000E-05 CYCIE = 214
CALCULATION MESH

1ST X = 1.00Z-01 l H
X INC = 2.00E-02 ‘
187 ¥ = 0.00E+00

Y INC = 5.00%-02

| | |

Figure 16 Simulation grid at 20 pus.

MODEL :TAB NEW-AL 8.8.1
T = 2.000E-05 CYCLE = 214
VELOCITY

MAX = 3_238E+403
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Figure 17 Fluid velocity at 20 pus.
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MODEL:TAEB NEW-AL 8.8.1

T = 2.000E-05 CYCLE = 214
TOROIDAL MAGNETIC FIELD

-= 1.6E-05 B= 2,3E-01 D= 4.5E-01

F= 6.8E-01 H= 9.1E-0} += 1,1E+00

Figure 18 Azimuthal magnetic field at 20 us.

MODEL:TAB NEW-AL 8.8.1

T = 2.000E~05 CYCLE = 214
SPEC. INT. ENERGY

-= 2.6E+05 B= 5.1E+05 D= 1.0E+06

F= 2.0E+06 H= 4.1E4+06€ += B.1E+06

Figure 19 Internal energy density at 20 us.

15




MODEL:TAB NEW-AL 8.8.1
T = 3.000E-05 CYCIX = 404
CALCULATION MESE _l

1ST X = 1.00E-01
X INC = 2.00E-02
1ST ¥ = 0.00E+00
Y INC = 5,00E~02

Figure 20 Simulation grid at 30 us.

MODEL:TAB NEW-AL 8.8.1
T = 3.0008-05 CYCIE = 404
VELOCITY

MAX = 8.223E+03

Figure 21 Fluid velocity at 30 ps.
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MODEL:TAB NEW-AL 8.8.1
T = 3.000E~-05 CYCLE = 404
TOROIDAL MAGNETIC FILID

-= 1.4E-04 Bx 5.0E-01 D= 1.CE+00

F= 1.5E400 H= 2.0E+00 += 2.5E400

Figure 22 Azimuthal magnetic field at 30 us.

MODEL :TAB NEW-AL a.8.1
T = 3.000E-05 CYCLE = 404
SPEC. INT. ENERGY

-= 2.6E+05 Bs 5.3K+05 D= 1.1E406 \!

F= 2.28+06 H= 4_.5E+06 += 9_.2K+06

Figure 23 Internal energy density at 30 ps.
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5. Conclusions

The dynamic explosive model described here appears to be a useful device for
allowing MACH2 to simulate detonations. It has the positive features of being quite
easy to institute, use, and modify, and of causing the detonation to act under many
of the same physical effects that influence a real detonation. The On the negative
side, it is most likely not as accurate as the more sophisticated detonation models
that are available, nor does it provide the user with the abundance of controls that
more advanced explosive equations-of-state provide.

The capability for designing explosive magnetic flux compression generators that
this explosive model gives to MACH2 has been demonstrated by a simple two-
dimensional simulation. There are still several areas of work that would make this a
more useful and more easily used tool. The most significant of these areas concerns
the impact of the armature on the inner conductor. In the simulation presented
above, the cells in the void region become very highly compressed as the armature
approaches the inner conductor. Research into the relevant physical processes and
into an acceptable numerical treatment would be of great benefit in treating the
collision. Another area of work that would lead to significant improvements in
MACH2’s capacity to design such devices is in the way the code handles problems
containing several different materials. Its present method is adequate for the
simple sort of problem present in the two-dimensional demonstration, but far more
interesting problems could be treated if MACH2 were outfitted with an improved
multimaterials capability.
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Appendix A Listing of One-Dimensional
Demonstration Input File

Explosive model: 1d sensitivity characterization
Scontrl

t = 1.0e-11,
twfn = 28.5e-6,
imns = 60,

dt = 1.0e-9,
dtmax = 1.e-07,

hydron = .true.,
meshon = .true.,
radiate = .false.,
] radsplit = .false.,
! radflxlt = .false.,
thmldif = .false.,

tdtol = 1l.e-4,
bdiff = .false.,

rdtol = l.e-4,

aresfdg = 0.05,

ciron = .false.,

conZ2on .true.,
rofvac =
rofjoule
rof = 1l.e-5
rofsiecp =

siecap

[

-1,
e

N ¢]

1,

.e—-4,
1.e9,

I~

nsmooth = 4,
wrelax = 0.25,

! make the thing slabindrical
cyl = 0,

volratm =
courmax =
rmvolrm =
itopt = 20,
mu = 5.6,

~

o O
N O
~

~
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donormn = 1.,

theb = 1.,
eps = l.e-3,
conserv = 0.,

mglmax = 1,

Send
Soutput

dtm = 1.el0,

dtrst = 10.0e9,
dto = 1000.0e-9,

dtp = 2.5e-6,

dtslic = 2.5e-86,

ibdyslic =
lblkslic = 1,
ijslic = 2,

|
=
~

intty = ’'edits, 10/,
intbound = .false.,
kcon(l) = 11,
contyp({l) = ‘log’
plot (8) = ’‘numvis’,
plot (9) = ’'joulheat’,
plot(11) = ’sie’,
plot (12) = ’dirke 75
Send
Sezgeom
npnts = 4,
pointx (1) 0.00e-2,
pointy (1) 20.00e-2,
pointx(2) = 1.00e-2,
pointy(2) = 20.00e-2,
pointx {3) 1.00e-2,
pointy (3) 0.00e-2,
pointx(4) = 0.00e-2,
pointy(4) = 0.00e-2,
nblk = 1,

corners(1,1)

20




$end

Sezphys
icellsg = 2,
jcellsg = 20,
eosmodlg = "grun",
ang = 6.,
awg = 12.,
roig = 1.89%94e3, densityg = 1.894e03, csqlg =
/ tempig = 2.5e-2,
sieig = 2.67e05,
! gdvlg = 0.95,
gdvlg = 1.0,
donorg = .true.,
radmodlg = "“none",
$end
$inmesh
name (5) = 'l=expl’,
nigen = 0,
niter = 3,
egvol = 2500.,
eosmodl (1) = "explosiv",

g pretend the material is pbx-9502
siei(l) = 0.2674e06,
roi(l) = 1.894e03,

an(l) = 5.598417, aw(l) = 10.980013,
! tempi (1) = 0.025,

gml0(l) = 1.37, csgq0(l) = 2.e06,

tfusi(l) = 5.e6, hfusi(l) = 1.e02,

tvap(l) = 6.e6, hvap(l) = 1.e02,

tdiss(l) = 7.e6, hdiss{(l) = 1.e02,

tionize (1) 8.e6, hion(l) = 1.e02,

$end
'Smodtim
!' tmod = 100.e-9,

! Send
! $Sinmesh

i tflow(4,1)
! velbc(4,1)

2.5e-02,
’freeslip’, probc(4,1) = 'wall’

!$end

21
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Appendix B Listing of Two-Dimensional
Demonstration Input File

Explosive model:TAB new-AL

Scontrl
t = 1l.e-11,
twfn = 50.0e-6,
imns = 60,
dt = 1.0e-9,

dtmax = 1.e-07,

hydron = .true.,
meshon = .true.,
radiate = .false.,
! radsplit = .false.,
! radflxlt = .false.,
thmldif = ,false.,

tdteol = 1l.e-4,

bdiff = .true.,
rdtol = 1l.e-4,
aresfdg = 0.05,

ciron = .false.,
con2on = .true.,
gdvlmod = .true.,

v rofvac = 1.,
= 1.,

rofjoule

rof = 1.e-5,

rofsiecp = l.e-4,
siecap = 1l.e9,

nsmooth = 4,
wrelax = (.25,

! make the thing cylindrical
cyl = 1,

22




volratm =
courmax =
rmvolrm =
itopt = 20,
ma = 5.6,
donormn = 1.,
theb = 1.,
eps = l.e-
conserv =

8,
.0,
2

I

o o

3,
0.,
mglmax = 1,

$end
Soutput

dtm = 1.el0,

dtrst = 10.0e9,
dto = 1000.0e-9,
dtp = 1.0e-06,
dtslic = 1000.e-9,
ibdyslic = 4,
1blkslic 3,
ijslic = 2,

intty = ’‘edits,10’,

intbound = .false.,
kcon(l) = 11,
contyp(l) = ’‘log’

plot (8) = ’'numvis’,
plot {9) = ’joulheat’,
plot (11) = ’sie’,

plot (12) = 'dirke 0.

ncychist =1,

histnum = 1, probtype(l) = ’‘bzdot’,
histx(l) = 1.05e-2, histy(l) = 15.e~-02,
histnum = 2, probtype(2) = ’'rbzdot’,
histx(2) = 1.05e-2, histy(2) = 15.e-02,
$end
Sezgeom
npnts = 8,
pointx(l) = 20.00e-2,
pointy(l) = 20.00e-2,
pointx(2) = 20.00e-2,
pointy(2) = 0.00e-2,
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pointx(3) = 16.00e-2,

pointy{(3) = 0.00e-2,
pointx (4) = 16.00e-2,
pointy(4) = 20.00e-2,
pointx(5) = 15.00e-2,
pointy(5) = 20.00e-2,
pointx{(6) = 15.00e-2,
pointy(6) = 0.00e-2,
pointx(7) = 10.00e-2,
pointy(7) = 0.00e-2,
pointx(8) = 10.00e-2,
pointy(8) = 20.00e-2,
nblk = 3,
corners (i, 1l) 4,1,2,3,
corners(l,2) = 5,4,3,6,
corners(l1,3) = 8,5,6,7,

Send

Sezphys

icellsg = 4,
jcellsg 20,

! tempig = 2.5e-2,
sieig = 2.67e05,

g gdvlg = (.95,
gdvlg = 1.0,
donorg = .true.,
radmodlg = "none”,

Send

Sinmesh

name (5) = ’8.8.3’,
nigen = 0,

niter = 3,

egvol = 2500.,

eosmodl (1) = "explosiv",
! pretend the material is pbx-9502
siei(l) = 0.2674e06,
roi(l) = 1.894e03,

an(l) = 5.598417, aw(l) = 10.980013,
! tempi(l) = 0.025,
gml0(l) = 1.37, csg0(1l) = 2.e06,
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tfusi(l) 5.e06, hfusi(l) = l.e02,
tvap(l) = 6.e06, hvap(l) = 1.e02,
tdiss(l) = 7.e06, hdiss(l) = 1.e02,

tionize (1) 8.e06, hion(l) = 1l.e02,
! eosmodl (2) = "grun",

! the material is aluminum

tempi(2) = 0.025,

roi(2) = 2.7e03,

matname (2) = 'al-new’,

resmodl (2) = ‘tabular’,

an(2) = 13., aw(2) = 26.9815,
gml0{(2) = 1.136, csq0(2) = 29.e06,

tfusi(2) 5.e06, hfusi(2) = 1.e02,
tvap(2) = 6.e06, hvap(2) = 1.e02,
tdiss (2) = 7.e06, hdiss(2) = 1.e02,

tionize(2) 8.e06, hion(2) = 1.e02,
gdvlm(2) = 0.,
rmingdv (2)
delrgdv (2)
gdvim(3) = 0.,
rmingdv(3) = 0.100,
delrgdv (3) 0.001,

[}

0.104,
0.001,

! eosmodl (3) "idealgas",
matname (3) ‘al-new’,
resmodl (3) = ’tabular’,

! pretend the material is voidium

roi(3) = 1.e-3,
! an{3) = 1., aw(3) = 1.,
tempi(3) = 0.025,

18

gdvl(3) = 0.95,
gdvlb(2,3) = 1., gdvlb(4,2) = 1.,
gridbc{2,3) = ’'fixedgp’,

! fill in initial b-theta field

binit (1) = ‘nocurnt’,
bzi(l) = 0.e-02, rnomfld = l.e-1,
binit (2) = ‘nocurnt’,
! anomres (2) = .false.,
i anomres (3) = .false.,
bzi(2) = 0.e-02,
binit (3) nocurnt’,

bzi(3) = 1.e0,

$end
! Smodtim
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' tmod = 100.e-9,

" !'Send
! $inmesh
i tflow(4,1) = 2.5e-02,
f velbc(4,1) = 'freeslip’, probc(4,1) = ‘wall’,
! Send
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Appendix C Listing of MACH2 Modifications File

*id v9102
*define unicos
*d mach2.37
modvers = ‘x’
*d eos.l14,22
if (eosmodl (1blk) .eq. "explosiv")then
call eosxpl
else
if (con2on)call eoslreg
call eosawan
if {eosmodl (1blk) .eq."idealgas")then
call eosideal
else if(eosmodl (1blk).eq.grun")then
call eosgrun
else
call eostable
end if
end if

*af, ,eostrans
*dk eosxpl
subroutine eosxpl

c—--- explosive model

c--- tests whether material is detonated or undetonated material
c--- if undetonated, tests whether it should detonate, and if it
c~--- should, adds the user-determined amount of internal energy
c—--- to mimic detonation, then converts material to detonated state
c--- use gruneisen eos for undetonated and detonated material

cdir$ nolist
include ’common.h’
include ’inputcom.h’
include ’'pointer.h’
cdir$ list
pointer (kp095, gold(0:ip2,0:3p2))
common/explcom/xplcritn, xplsie, siecrit
data xplcritn/0.1/, xplsie/5.e06/, siecrit/5.348e05/

c--- get new artificial viscosity
call numvis {mu, cyl)
c—-—- it is used in the decision to detonate
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do 100 j = 1, jcels
do 100 1 = 1, icels
CRECEE S detonation state is governed by con2
if (con2(i, 3).1t.0.5)then
e cell contains undetonated explosive
if(j.eq.jcels)then
e e artificial initiator
gii,j)y = 1.
gold (i, ) = 2.
sie(i,j) = siecrit
end if
@ Poomomooome oo test for detonation
if(g(i,3) .1lt. gold(i,j) .and.
% sie(i,j).ge.siecrit)then
o e material in this cell is to detonate
sie(i,J) = sie(i,j) + xplsie
con2 (i, j) = 1.
end if
end if
CEEE S iy use gruneisen eos
lreg (i, j) = nreg(lblk)
lregc = lreg (i, j)
awc (i,j) = awanmlt (lregc) * aw{lregc)
anc(i,j) = awanmlt(lregc) * an({lregc)
St e gruneisen eguation of state
eosfac = pm / ge
az = one - tsplit / ( tsplit + tiny )
fac = 0.5d0 * ( gmlQ(lregc) + 2.40 )
dv = one / density(lregc) - one / ro(i, 3)

Sl cold curve
sieg = 0.540 * csqg0(lregc) *

(dv/ (one/density (lregc) —-fac*dv) ) **2
xyz = one - density{(lregc)/rol(i, 3)
pg = density(lregc)*csgl{lrege) *xyz/

ae

% ((one-fac) + fac*density(lregc)/ro(i, j))**2 *
% (one - 0.5*gml0 (lregc) *xyz)
Boommremcoomeoonooss bracket fusion
ef = sieg + tfusi(lregc) /
% { awc{i,3) * eosfac * gml0(lregc) )

ef2 = ef + hfusi(lregc)

BrrmrToesemeommmmes bracket vaporivation

ev = ef2 + ( tvap(lregc) - tfusi(lregc) ) /
( awc(i,Jj) * eosfac * gmll(lregc) )

ev2 = ev + hvap(lregc)

o®

Sy - ———— == bracket disassociation
ed = ev2 + ( tdiss(lregc) - tvap(lregc) ) /
( awc (i, j) * eosfac * gml(lregc) )

oe
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oe

[

o

oe

o\°

ed2 = ed + hdiss{lregc)

bracket ionization

ei = ed2 + { tionize(lregc) - tdiss(lregc) ) /
( awc(i,j) * eosfac * gml(lregc) )

ei2 = ei + hion(lregc)

beyond this, assume the gas is ionized
we really need something like a SAHA model here

near ionization
if (sie(i,Jj) .gt. ei2) then
te(i,3j) = tionize(lregc) +
eosfac*gml(lregc)*(sie(i,j)—eiZ)*awc(i,j) /
( az + nfe(i,3) )
dtde (i, j) = eosfac*gml (lregc) *awc{i, i) /
( az + nfe(i, ) ) :
p(i,J) = pg+gm1(lregc)*ro(i,j)*sie(i,j)
csqg(i, j) = (gml(lregc)+one)*gm1(lregc)*sie(i,j)
endif
if (sie(i,3).gt.ei.and.sie(i,j).le.ei2)then
te(i,3) = tionize(lregc)
dtde (i, j) = tiny
p(i,j) = pg + gml(lregc)*ro(i,j)*sie(i,j)
csg{i,3) = (gml(lregc)+one)*gml(lregc)*sie(i,j)
endif

near disassociation
if (sie(i,j).gt.ed2.and.sie(i, j).le.ei)then
te(i,j) = tdiss(lregc) + az *
eosfac*gml(lregc)*(sie(i,j)-edZ)*awc(i,j)
dtde (i, j) = eosfac * gml(lregc) * awc (i, J)
pl(i,3) = pg + gml (lregc) *ro{i, ) *sie (i, )
csqg(i,3j) = (gml(lregc)+one)*gml(lregc)*sie(i,j)
endif
if (sie(i,j) .gt.ed.and.sie (i, j).le.ed2)then
te(i,j) = tdiss(lregc)
dtde (i, j) = tiny
pii,3) = pg + gml({lrege) * ro{i,j) * sieli, )
csgfi,j) = (gml(lregc)+one)*gml(lregc)*sie(i,j)
endif

e S near vaporization

if(sie(i,j).gt.ev2.and.sie(i,j).le.ed)then

te{i,j) = tvap(lregc) + az *
eosfac*gml(lregc)*(sie(i,j)—ev2)*awc(i,j)

dtde (i, j) = eosfac * gml(lregc) * awc (i, J)
p(i,j) = pg + gml(lregc) * ro{i,j) * sie(i, )
csqg(i,j) = (gml(lregc)+one)*gm1(lregc)*sie(i,j)

endif

if(sie(i,j).gt.ev.and.sie(i,j).le.ev2)then
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te(i,j) = tvap(lregc)

dtde (i, j) = tiny

p(i,j) = pg + gml{lregc) * ro(i,]J) * sie(i,])

csg(i,3) = {(gml(lregc)+one)*gml (lregc) *sie (i, j)
endif

near fusion

if(sie(i, j).gt.ef2.and.sie(i, j).le.ev)then
te(i,j) = tfusi(lregc) + az *

eosfac*gmll (lregc) * (sie (i, j) —ef2) *awc (i, j)

dtde(i, j) = eosfac * gmll{(lregc) * awc (i, j)
pli, j) = pgtgmll {iregc)*ro(i, ) *sie(i, )
csg{i,j) = csql(lregc)

endif

if(sie(i,3j).gt.ef.and.sie(i, j).le.ef2)then
te(i, j) = tfusi(lregc)
dtde (i, j) = tiny :
p(i,Jj) = pg + gmll(lregc)*ro(i,j)*sie(i, ])
csqg(i,j) = csql(lregc)

endif

solid
if(sie(i, j) .ge.sieg.and.sie{i, j).le.ef)then
te(i,j) = eosfac * az *
gml0 (lregc) * (sie(i,j)-sieg) * awc(i, J)
dtde(i, j) = eosfac * gmlO(lregc) * awc (i, j)

p(i, j) = pg + gmlO(lregc)*ro(i, j)*sie(i, j)
csq{i,3) = csql(lregc)
endif

if(tsplit.eq.0)then
ti(i,]J) = eosfac*gml (lregc)*
(sieion (i, j)-sieg) *awc (i, J)
dtide (i, j) = eosfac * gmll(lregc) * awc (i, 3)
pion(i,J) = pg
endif
100 continue

c—-- save old artificial viscosity
do 50 j =1, jcels
do 50 1 = 1, icels
gold(i,3j) = g(i,])
50 <continue

return
end

*d eosmat.19,20
if (eosmodl (1blk) .eq. ‘idealgas’
eosmodl (1blk) .eg. ’‘grun’
eosmodl (1blk) .eq. ’'explosiv’
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*d eosmat.46,47

elseif

o0

o

*d eossie.34
elseif
%

*d eossie. 94
elseif

%

(eosmodl (1blk)
eosmodl (1blk)
eosmodl (1blk)

(eosmodl (1blk)
eosmodl (1blk)

(eosmodl (1blk)
eosmodl (1blk)

.eq.
.eq.
.eq.

.eqg.
.edq.

.eq.
.eq.

*idealgas’ .or.
‘grun’ .or.
'explosiv’ ) then

“grun’ .or.
"explosiv’) then

'grun’ .0r.
‘explosiv’) then
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