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The Effect of Magnetohydrodynamic (MHD) Energy Bypass on 
Specific Thrust for a Supersonic Turbojet Engine 

 
Theresa L. Benyo 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic 

turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of 
MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a 
magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet 
engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 
1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a 
supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is 
shown to be extended to Mach 7.0. 

Nomenclature 
Ae cross sectional area of the nozzle exit 
Ag cross sectional area of the MHD generator 
B magnetic field intensity 
Cp constant pressure specific heat 
F thrust 
F/ am  specific thrust 
f fuel-to-air mass flow ratio 
K Faraday loading parameter 
L length of the MHD generator 

am  mass flow rate of the air at the entry of the MHD generator 
Ma flight Mach number 
pa freestream static pressure 
pe static pressure at the nozzle exit 
Pelec power output of the MHD generator 
qf fuel heating value 
R gas constant for air 
T0,3 stagnation temperature at entrance to the burner 
T0,4 stagnation temperature at the exit of the burner 
T0,5 stagnation temperature at the exit of the turbine 
T0,6 stagnation temperature at the exit of the MHD accelerator 
T0,a freestream total temperature 
T0,lim stagnation temperature limit of the engine 
Ta freestream static temperature 
u flow velocity 
γ specific heat ratio for air 
ηc combustion efficiency 
ηN(a) enthalpy extraction/addition ratio of the MHD accelerator 
ηN(g) enthalpy extraction/addition ratio of the MHD generator 
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ηs(a) isentropic efficiency for the MHD accelerator  
ηs(g) isentropic efficiency for the MHD generator 
πa stagnation pressure ratio of the MHD accelerator 
πb stagnation pressure ratio of the burner 
πc stagnation pressure ratio of the compressor 
πd stagnation pressure ratio of the diffuser 
πe stagnation pressure ratio of the expansion section 
πg stagnation pressure ratio of the MHD generator 
πn stagnation pressure ratio of the nozzle 
πp stagnation pressure ratio of the pre-ionizer 
πt stagnation pressure ratio of the turbine 
П global stagnation pressure ratio 
σ electrical conductivity 
χ fraction of generator power diverted to pre-ionizer 

Introduction 
A 1–D thermodynamic cycle analysis (Ref. 1) was completed for a supersonic turbojet engine with a 

MHD energy bypass system which consists of a MHD generator and MHD accelerator for flow control 
and energy bypass capability. For many years, MHD technology has been studied and recognized as a 
viable technology for increasing the performance of supersonic and hypersonic flight vehicles. 
Electromagnetic fields are used to enhance flow features in supersonic/hypersonic inlets for flow control 
and combustor energy bypass. Expanding flows in high speed nozzles may also be accelerated by means 
of electromagnetic forces to augment the thrust generated. The overall objective of this paper is to 
establish the feasibility and demonstrability of a kinetic energy bypass from the inlet air-stream of a jet 
engine that has been weakly ionized by an external means to a downstream location using MHD 
interaction with the ionized air stream. 

This paper describes a previous 1–D thermodynamic cycle analysis (Ref. 2) of a ramjet/scramjet and 
describes an extension of this analysis to a turbojet by exploring a range of MHD enthalpy extraction 
parameters using a previous (Ref. 3) enthalpy extraction/addition ratio derivation. It should be noted that 
these results are preliminary and require further study. The analysis is a point-to-point 1–D 
thermodynamic cycle analysis where only energy bypass is considered. This analysis additionally does 
not take into consideration any variable cross sectional areas. The Mach 3.3 condition at the J-102 inlet 
needs to be maintained at the higher free-stream Mach numbers. Maintaining these constraints would 
normally require an iterative procedure, which this analysis does not have. Even so, this analysis produces 
results that are encouraging enough to continue to explore the use of MHD bypass for supersonic and 
hypersonic flight.  

Background 
A 1–D thermodynamic cycle analysis previously completed (Ref. 2) was studied and the results were 

verified. The analysis assumes a constant stagnation pressure ratio for each element of the MHD energy 
bypass ramjet/scramjet engine which is illustrated in Figure 1. The MHD energy bypass system 
incorporated into a conventional gas turbine technology is a revolutionary concept which offers three 
distinct advantages. It allows turbomachinery to operate continuously over the entire range of Mach 0 to 7 
where no deadweight engines are carried aloft. This revolutionary concept only uses hydrocarbon fuel 
where the plasma in the weakly ionized flow may be used to reform the hydrocarbon fuel into hydrogen. 
And finally, there is high potential for increased specific impulse. 

A MHD energy bypass system bypasses kinetic energy from the inlet stream and uses it downstream 
to generate more thrust or reduce drag on the vehicle. This energy bypass is accomplished by using weak 
ionization of the inlet stream by an external means and MHD interaction with the ionized gas. The key  
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feature of the engine lies in the additional hardware surrounding the jet engine. There are three main 
components of a MHD energy bypass system; the pre-ionizer, the MHD generator and the MHD 
accelerator. 

The pre-ionizer is positioned in the inlet where it ionizes the incoming flow which, in conjunction 
with applying a magnetic field to the flow, provides the benefits of flow control. The flow is ionized by 
the high voltage nanosecond discharge method (Ref. 4) where high-voltage, short pulse duration, high 
pulse repetition rate discharges generate ionization in supersonic cold flows (T0 = 300 K). 

The MHD generator towards the front of the engine acts as a flow control device and provides power 
to the pre-ionizer and MHD accelerator. The electromagnetic fields produced by the MHD generator are 
used to enable variable inlet flow control that is similar to that controlled by variable geometry. The MHD 
generator is a non-obstructing means of total temperature reduction that can be controlled by applied 
magnetic fields and load parameter adjustment. The MHD accelerator at the back of the engine 
accelerates the flow exiting the engine by applying electromagnetic forces to ionized flow which work 
together to augment the thrust generated. 

In order to fully understand the current work described in this paper, it is essential to document the 
equations used in the previous analyses. The specific thrust of an engine can be derived by coupling the 
first and second laws of thermodynamics with elementary gasdynamic relationships. The calculation for 
the specific thrust (F/ ሶ݉ ௔ሻ as derived in Reference 1 is 

 ி

௠ሶ ೌ
ൌ  ቈሺ1 ൅ ݂ሻට

ଶஓோ బ்,లሺஈିଵሻ

ሺஓିଵሻஈ
െ ௔ඥγܴܯ  ௔ܶ቉ ൅

௣೐஺೐

௠ሶ ೌ
ቀ1 െ

௣ೌ

௣೐
ቁ (1) 

Notice that as long as the ratio of pa/pe is 1, the additive term contributes nothing to the specific thrust 
calculation. Two main contributors to the specific thrust calculation are the fuel-to-air mass flow rate (f) 
and the freestream Mach number,(Ma). In Equation (1), f is the fuel-to-air mass flow rate and is further 
expressed as 

 ݂ ൌ
ଵି൫ బ்,య ்బ,೗೔೘⁄ ൯

൫ఎ೎௤೑ ஼೛்బ,೗೔೘⁄ ൯ିଵ
 (2) 

Another important contributor to Equation (1) is the global stagnation pressure ratio. This ratio takes into 
account the pressure ratios of the pre-ionizer, the diffuser, the MHD generator, the burner, the expansion, 
the MHD accelerator and the nozzle. The global stagnation pressure ratio parameter is further expressed 
as 
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 Π ൌ ቀ1 ൅
ஓାଵ

ଶ
௔ܯ

ଶቁ ቀπ௣πௗπ௚π௕π௘π௔π௡
௣ೌ

௣೐
ቁ

ሺஓିଵሻ ஓ⁄
 (3) 

where the individual stagnation pressure ratios of each component are either computed using efficiency 
parameters or held at constant values. The pressure ratios of particular interest in this analysis are the 
pressure ratios for the MHD generator and MHD accelerator. The stagnation pressure ratio for the MHD 
generator is 

  π௚ ൌ ൬1 െ
஗ಿሺ೒ሻ

஗ೞሺ೒ሻ
൰

ಋ
ಋషభ

 (4) 

and the stagnation pressure ratio for the MHD accelerator is 

 π௔ ൌ  ൤1 ൅ η௦ሺ௔ሻ ቀ ଵ

ଵା௙
ቁ 

ሺଵି஧ሻ஗ಿሺ೒ሻ

ଵି஧஗ಿሺ೒ሻ

బ்,ೌ

బ்,ర
൨

ಋ
ಋషభ

 (5) 

The analysis studied produces results indicated in Figure 2 wherein the enthalpy extraction parameter 
of the MHD generator was held constant at five different levels; 0, 0.25, 0.5, 0.65, and 0.75. This 
parameter is the ratio of the stagnation enthalpy change in the MHD generator device to the entrance 
stagnation enthalpy. For each parameter level, the specific thrust was calculated for all Mach numbers 
from 1 to 12. As indicated in the figure, as the MHD generator enthalpy extraction increases, the 
operating range of the engine expands into Mach numbers above Mach 8. For example, if one wants to fly 
at Mach 8, the MHD generator enthalpy extraction percentage would have to be at least 25 percent. In 
order to fly at Mach 10, a MHD generator enthalpy extraction percentage of at least 50 percent is 
required. It is noted however, that the maximum specific thrust achieved is decreased as a result of using 
the MHD energy bypass system. Even though the analysis shows a maximum potential performance 
decrease, with the application of the MHD energy bypass system (i.e., creating an environment where the 
MHD generator enthalpy can be changed), the aircraft has the potential of operating at higher Mach  

 

 

  
Figure 2.—Results of 1–D thermodynamic cycle analysis for a ramjet/ 

scramjet from Litchford et al. with added ηN(g) values of 0.65 and 0.75 
Specific thrust as a function of flight Mach number for ηN(g) = 0, 0.25, 0.5, 
0.65, and 0.75. 
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numbers. Therefore, the result of the analysis indicates that there are flight envelope benefits and should 
be researched more vigorously. 

As derived in Reference 2, the enthalpy extraction/addition ratio is determined by the output power 
produced by the MHD generator and the enthalpy input through the ‘inlet’ of the MHD generator. This 
ratio is portrayed in the following equation: 

 ηேሺ௚ሻ ൌ  
௉೐೗೐೎

௠ሶ ೌ஼೛ బ்,ೌ
 (6) 

where Pelec is the power output of the MHD generator (in Watts) and T0,a is the total temperature of the 
freestream air and ሶ݉ ௔ is the mass flow rate of the air coming into the MHD generator. Equation (6) 
allows a calculation of a variable MHD generator enthalpy extraction parameter. The expression for the 
power output, Pelec also derived in Reference 2 was used to calculate the power output of the MHD 
generator. That equation is expressed as: 

 ௘ܲ௟௘௖ ൌ  σݑଶܤଶܭሺ1 െ  (7) ܮ௚ܣሻܭ

where σ is the conductivity of the ionized air, u is the velocity of flow entering the MHD generator in m/s, 
B is the applied magnetic field in Tesla, K is the Faraday loading parameter (usually held at 0.5) for the 
generator, Ag is the cross sectional area of the MHD generator in m2, and L is the length of the generator 
in meters. 

Current Analysis with a Turbojet 
This analysis builds upon previous work performed (Ref. 2) with a ramjet/scramjet and uses a variable 

MHD generator enthalpy extraction parameter coupling details of the MHD generator design into the 
analysis (Ref. 3) to further enhance a thermodynamic cycle analysis of a supersonic turbojet engine. The 
MHD generator is used to augment turbojet performance mainly by extending the operating range to 
higher Mach numbers. 

The geometry used for this analysis is shown in Figures 3 and 4. The concept engine is a MHD driven 
energy bypass supersonic turbojet engine (Ref. 5). The MHD generator may be employed in the inlet, 
nozzle, and another duct, individually and in combination. The possibility of electromagnetically 
extracting part of the turbojet inlet air kinetic energy is the key feature. The concept potentially offers 
variable inlet 

 

 Figure 3.—General arrangement of MHD controlled turbojet for high-speed propulsion.  
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geometry performance without the complexity of moving inlet parts. Three primary aeropropulsion 
purposes are served by the concept. Firstly, the flow enthalpy into the combustor is reduced allowing 
more efficient addition of energy in the combustor without exceeding temperature limitations on the 
turbine materials. Secondly, the applied electromagnetic fields and their body forces can enhance off-
design performance by manipulating the flow features in the supersonic/hypersonic inlets thereby 
reducing total pressure losses and entropy changes for the same level of flow compression by other 
means. Thirdly, electrical power removed can be used for various on-board vehicle requirements 
including plasma flow control around the vehicle. In addition, the expanding flow in the high-speed 
nozzle may also be augmented by electromagnetic forces to generate more thrust. 

Because a supersonic turbojet engine is being used in this case instead of a ramjet/scramjet, a 
different expression for the global stagnation pressure ratio is needed. Equation (8) expresses the new 
global stagnation pressure ratio. 

 
  
















 


1
2

2
11

e

a
naetbcgdpa p

pM  (8) 

where two additional stagnation pressure ratios are needed to model the supersonic turbojet’s compressor 
and turbine. The stagnation pressure ratio of the compressor in this case is held constant at a well-known 
value. The turbine’s stagnation pressure ratio is computed in the normal manner and expressed as: 

 
  1

4,0

5,011 





















t

T
T

t  (9) 

In addition, because of the turbine, a new stagnation pressure ratio of the MHD accelerator was 
needed. The equation used for this pressure ratio is: 

      11 


 aNasa  (10) 

where the efficiency parameter for the MHD accelerator is computed by the following equation: 

   5,0

5,06,0

T
TT

aN
  (11) 

 
Figure 4.—Schematic of MHD controlled turbojet for high-speed propulsion. 
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In this study, the focus was on a supersonic turbojet engine like the Allison J-102 with a MHD energy 
bypass system and the following operating conditions (Refs. 6 and 7): 

System 
Stagnation temperature limit (T0,lim): 1600, 1800, 2000, and 2200 K 
Freestream temperature (Ta): 233 K 
Turbojet engine length: about 1.2 m 

Pre-ionizer 
Stagnation pressure ratio (πp): 1 

Diffuser 
Stagnation pressure ratio (πd): 0.7 

MHD Generator 
Mass flow rate of air (݉௔ሶ ): 28 kg/s 
Electrical conductivity (σ): 1 mhos/m and 10 mhos/m 
Magnetic field (B): varies from 0 to 20 Tesla 
Length (L): 1 and 10 m  
Cross sectional area (Ag): 0.5 m2 

Isentropic efficiency: 0.9 
Fraction of generator power diverted to pre-ionizer (χp): 0.05 
Faraday loading parameter (K): 0.5 

Compressor 
Isentropic efficiency: 0.77 
Stagnation pressure ratio (πc): 12 

Combustor 
Combustion efficiency (ηc): 1 
Fuel heating value (qf): 45,000 kJ/kg 

Turbine 
Isentropic efficiency: 0.79  
Stagnation pressure ratio (πt): varies to match compressor power 

Expansion 
Stagnation pressure ratio (πe): 1 

MHD Accelerator 
Isentropic efficiency: 0.9 

Nozzle 
Stagnation pressure ratio (πn): 0.98 

Results for a Turbojet 
For this study, the specific thrust was calculated for a range of Mach numbers from 1 to 7. The MHD 

generator’s enthalpy extraction ratio varied with a magnetic field range of 0 to 20 Tesla. Figures 5 to 12 
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show the results at four combustion temperature limits (1600, 1800, 2000, and 2200 K), two MHD 
lengths (1 and 10 m), and two conductivity levels (1 and 10 mhos/m). 

The data in Figures 5 and 6 are for a 1600 K temperature limit. Note that there is no specific thrust 
benefit with the application of magnetic fields below Mach 2. The application of magnetic fields enables 
positive specific thrust from Mach 3 to 5. 

 

 
 

 

 
Figure 6.—Results of 1–D thermodynamic cycle analysis for a turbojet. 

Specific thrust as a function of magnetic field for variable ηN(g). 
Results are the same if the MHD generator length is 1 m and 
conductivity of the flow field is 10 mhos/m. 
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Figure 5.—Results of 1–D thermodynamic cycle analysis for a turbojet. 

Specific thrust as a function of magnetic field for variable ηN(g). 
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In the data shown in Figure 5, a high magnetic field of over 7 Tesla is required for any specific thrust 
benefit to be realized with a low combustion temperature limit of 1600 K, a moderate flow conductivity 
of 1 mhos/m, and a MHD generator length of 1 m. If either the flow conductivity or the MHD generator 
length increases by tenfold, the required magnetic field drops by a factor of three as shown in Figure 6. 
An increase of 202 N/(kg/s) at a magnetic field of 3 Tesla is realized at the Mach 2.5 level. This 
corresponds to a thrust increase of 5.7 kN at a 28 kg/s flow rate at Mach 2.5. This affords a fairly good 
increase in performance of a supersonic turbojet engine. 

If we allow the combustion temperature limit to increase to levels of 1800, 2000, and 2200 K; higher 
Mach number flight is enabled. We can potentially increase the operating range into the hypersonic flight 
regime by using MHD energy bypass. 

Figures 7 and 8 show results with a combustion temperature limit of 1800 K. Note again that there is 
no specific thrust benefit with the application of magnetic fields below Mach 2. The application of 
magnetic fields in this case enables positive specific thrust up to Mach 6. If either the length of the MHD 
generator or flow conductivity is increased by tenfold, the required applied magnetic field decreases  
again by a factor of three. As seen in Figure 8, the specific thrust is increased by 144 N/(kg/s) at the  
Mach 2.5 level with an applied magnetic field of 3 Tesla. Even better, the specific thrust is increased by 
337 N/(kg/s) at Mach 3.0 with an applied magnetic field of about 3.75 Tesla. This corresponds to a  
thrust increase of 4.0 and 9.4 kN respectively at a 28 kg/s flow rate. 

If we increase the combustion temperature limit to 2000 K, even better results are achieved and are 
shown in Figures 9 and 10. The possible Mach numbers that show specific thrust improvements are now 
up into the Mach 6.5 range. As indicated in Figure 10 at Mach 2.5, the specific thrust is shown to increase 
by 106 N/(kg/s) with an applied magnetic field of just under 3 Tesla. Similarly, an increase in specific 
thrust of 263 N/(kg/s) is realized at Mach 3.0 with a magnetic field of about 3.5 Tesla. This corresponds 
to a thrust increase of 2.9 and 7.4 kN respectively at a 28 kg/s flow rate. 

 
 
 

 
 
 

 
Figure 7.—Results of 1–D thermodynamic cycle analysis for a turbojet. 

Specific thrust as a function of magnetic field for variable ηN(g). 

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Specific Thrust Characteristics vs Magnetic Field for MHD Length of 1 meters
with a combustion temperature limit of 1800 Kelvin and conductivity of 1 mhos/m.

Magnetic Field, T

F
/m

a 
(k

N
 s

ec
/k

g)

 

 

Mach 1.0
Mach 1.5

Mach 2.0

Mach 2.5

Mach 3.0

Mach 3.5
Mach 4.0

Mach 4.5

Mach 5.0

Mach 5.5
Mach 6.0

SecretM
ilitaryTechnology.comSecretM
ilitaryTechnology.com

SecretM
ilitaryTechnology.com

SecretM
ilitaryTechnology.com

SecretM
ilitaryTechnology.com

SecretM
ilitaryTechnology.comSecretM
ilitaryTechnology.com

SecretM
ilitaryTechnology.com

SecretM
ilitaryTechnology.com

SecretM
ilitaryTechnology.com

SecretM
ilitaryTechnology.comSecretM
ilitaryTechnology.com

SecretM
ilitaryTechnology.com

SecretM
ilitaryTechnology.com

SecretM
ilitaryTechnology.com



NASA/TM—2010-216734 10

 
 

 
 

The final two figures (Figs. 11 and 12) show results with a combustion temperature limit of 2200 K. 
At this temperature limit, the range of possible Mach numbers further increases to Mach 7. Along with 
the wider Mach number range, an increased specific thrust is now realized between Mach numbers 2 to 
3.5. Figure 12 shows that at the Mach 2.5 level, the specific thrust increases by 79 N/(kg/s) with a 
magnetic field of about 2.5 Tesla. A larger increase in performance occurs at the Mach 3.0 level where 

 
Figure 9.—Results of 1–D thermodynamic cycle analysis for a turbojet. 

Specific thrust as a function of magnetic field for variable ηN(g). 
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Figure 8.—Results of 1–D thermodynamic cycle analysis for a turbojet. 

Specific thrust as a function of magnetic field for variable ηN(g). The 
results are the same if the MHD generator length is 1 m and the 
conductivity of the flow field is 10 mhos/m.
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the specific thrust grows by 213 N/(kg/s) with an applied magnetic field of around 3.75 Tesla. Still larger 
specific thrust can be found at Mach 3.5 where a 420 N/(kg/s) increase can be realized with a magnetic 
field of just below 4 Tesla. This corresponds to a thrust increase of 2.2, 5.9 and 11.8 kN respectively at a 
flow rate of 28 kg/s. 

 

 
 

 
 

 
Figure 11.—Results of 1–D thermodynamic cycle analysis for a turbojet. 

Specific thrust as a function of magnetic field for variable ηN(g). 
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Figure 10.—Results of 1–D thermodynamic cycle analysis for a turbojet. 

Specific thrust as a function of magnetic field for variable ηN(g). The 
results are the same if the MHD generator length is 1 m and the 
conductivity of the flow field is 10 mhos/m. 
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Conclusion 
Through the new analysis described here, it is shown that applying a magnetic field to a supersonic 

flow path in the Mach 2 to 3.5 range will increase the specific thrust up to 420 N/(kg/s). It also shows that 
by using a MHD energy bypass system, a supersonic aircraft’s operating envelope may be increased into 
the hypersonic flight regime. All this is shown with a magnetic field between 1 to 5 Tesla and the length 
of the MHD generator between 1 and 10 m. 

As evidenced by the above results, MHD technology is a valuable addition to supersonic and 
hypersonic flight and should be studied further and in progressively more detail. As it stands, this analysis 
has shown that better specific thrust performance can be realized for an operating range of Mach 2 to 
Mach 3.5 and that there is high potential for an expanded operating envelope up to Mach 7.0 provided 
that suitable conditions are present and allow the supersonic turbojet to operate at combustion 
temperatures of 2200 K. In addition, it is hoped that future work can discover the conditions necessary for 
the required magnetic field to be in the more desired range of 1 to 2 Tesla. 

By working the areas listed above, it is desired that MHD technology can fully make its way into 
high-speed flight and reap the following benefits of this technology. 

 
 The flow enthalpy into the combustor is reduced allowing more efficient addition of energy in the 

combustor without exceeding temperature limitations on the turbine materials. 
 The applied electromagnetic fields and their body forces can enhance off-design performance by 

manipulating the flow features in the supersonic/hypersonic inlets thereby reducing total pressure 
losses, and entropy changes for the same level of flow compression by other means. 

 The electrical power removed can be used for various on-board vehicle requirements including 
plasma flow control around the vehicle. In addition, the expanding flow in the high speed nozzle 
may also be augmented by the electromagnetic forces to generate more thrust. 

 

 
Figure 12.—Results of 1–D thermodynamic cycle analysis for a turbojet. 

Specific thrust as a function of magnetic field for variable ηN(g). The 
results are the same is the MHD generator length is 1 m and the 
conductivity of the flow field is 10 mhos/m. 
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This analysis also confirmed previous work completed by Litchford, et al. as evidenced by the figures 
showing the expanded Mach number range that is possible.  

Future Plans 
It is planned to conduct cycle analyses to properly match the flows between the pre-ionizer, the MHD 

generator, the turbojet engine and the MHD accelerator and to establish the operating conditions for a jet 
engine cycle that are optimal for kinetic energy transfer from inlet air to a downstream location in the 
engine. It is also desired to establish a model for a jet engine with MHD energy bypass and determine the 
design and operating conditions in which the thrust-to-weight ratio, thrust per unit mass of fuel 
consumption, and effectiveness of energy utilization are maximized. 

Specific future work in this area of full engine cycle analyses using MHD technology includes: 
 
 Establish the operating conditions for a turbo-jet engine cycle, that are optimal for kinetic energy 

transfer from inlet air (Mach reduction to 0.8) to a downstream location in the engine in a bypass 
mode. 

 Establish the interaction parameter and efficiency for MHD conversion of kinetic energy of the 
ionized gas to electrical energy. 

 Quasi 1–D MHD theory will be employed to conduct inlet analysis evaluations using 
experimentally determined conductivity, interaction parameters, and the mass flow captured at 
the inlet. 

 Conduct interfacing studies between the MHD bypass generator, the turbojet engine, and the 
MHD accelerator. Perform a thermal analysis to properly match the flows from an inlet 
employing an MHD generator to a supersonic turbojet engine such as the Allison J-102 engine. 
Working with various operating conditions (such as flow mass, magnetic field, combustion 
temperature limit, and length of the MHD generator and accelerator) should help accomplish flow 
matching and extend operation to higher Mach numbers before performance degradation occurs. 
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