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ABSTRACT

Quantum mechanical approach is extended to the interaction of dust particles in a complex plasma. Massive and highly charged dust particles
interact each other through the exchange of quasi-particles (virtual waves) in a quantum mechanical viewpoint. The interaction is described by the
Hamiltonian, which describes the two-particle system as uncoupled harmonic oscillators. When the pair of dust particles are embedded in the
injected plasma wave, the Hamiltonian is found to show the presence of coupled harmonic oscillator indicating the emergence of the entanglement
in semiclassical nature. The entanglement of a pair of dust particles is encapsulated in the Hamiltonian, which is formulated by the method of sec-
ond quantization. The frequency of the wave to trigger the emergence of the entanglement is found to be one-half of the dust plasma frequency. The
interaction between a pair of dust particles is formulated as a scattering process and is described by the transition probability. Measure of the semi-
classical entanglement is shown by the entropy, and the resulting entropy is found to increase with time.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0192854

I. INTRODUCTION

A complex plasma is a plasma with dust particles and has intro-
duced many new aspects in the area of traditional plasma physics.1–4 A
complex plasma is ubiquitous in the universe, in the cosmic environ-
ment as well as on earth. Dust particles embedded in a plasma are
known to be charged and massive, allowing easy observation of par-
ticles themselves or dynamics of collection of particles by shining the
light on particles or even by naked eyes. The light could be photons in
cosmic environment or lasers in laboratory environment. The direct
observation helped to understand fundamental physics involving par-
ticles in macroscopic ways.

Recent developments in the study of quantum entanglement,5,6

especially observations of the entanglement in a macroscopic world,7–9

have motivated the present study. The quantum entanglement is a
property for two physical systems in which a measurement of one sys-
tem determines the state of the other. In other words, the entangle-
ment allows one or more particles to exist in a shared state even
though they are far away each other. Two-particle entanglements have
been studied for quantum states including two-electron system, two-
photon system, and atom-photon system.10 The entanglement genera-
tion in the scattering process of two-particle system was studied by
defining the entanglement fidelity.11 The concept of the entanglement
fidelity was applied to classical non-ideal plasmas12 as well as the ion-
wake field in a complex plasma.13 I start wondering if we can entangle

the motion of macroscopic pair of dust particles in a complex plasma
as a classical system.

Quantum mechanical approach had been taken to understand
the collective nature of phenomena in a plasma.14–18 Waves in a
plasma characterized by wave vector k and frequency x are considered
as a collection of quasi-particles which possess momentum �hk and
energy �hx, where �h ¼ h=2p and h is a Planck constant. The plasma
instabilities or plasma wave damping may be thought as a result of the
emission or absorption of quasi-particles by particles. When the emis-
sion exceeds the absorption, the number of quasi-particles grows, indi-
cating the instability with the growth of the amplitude of the wave.
When absorption exceeds emission, the wave is damped. On the other
hand, a collision process of particles of one species s and the other spe-
cies s0 in a plasma may be characterized by an emission of a quasiparti-
cle by a species s followed by the absorption of the quasiparticle by a
species s0. The quasi-particles exchanged by the particles s and s0 may
be called as virtual waves which are not observable, but play an essen-
tial role to understand the interaction of particles in the plasma with
collective nature. The virtual wave carries the information of the back-
ground plasma and characterizes the collective nature involving the
interaction of plasma particles. Thus, there is a conceptual advantage
in taking quantum mechanical approach by introducing quasi-
particles carrying the collective nature of plasmas. From the quantum
mechanical viewpoint, it becomes easier to write down the equation
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describing the change of the particle distribution function and the
change of the entropy in a system of particles-quasiparticles due to the
interactions among them.

A theoretical approach from a quantum mechanical viewpoint
was extended to the complex plasma and was successful in explaining
the macroscopic phenomena observed as a wake formation in a com-
plex plasma,19–23 where a pair of dust particles with negative charges
are formed because of the deformed screening effect in the presence of
supersonic ion flow. In a plasma, the long-range Coulomb potential
inversely proportional to the distance from the charge is shielded in a
typical distance known as a Debye length. The wake theory, however,
shows that the Debye shielding around a dust particle in the presence
of ion flow is deformed and extends like a bow wave known as a wake.
The modified Debye potential forms oscillatory potential wells and
extends far behind the dust particle beyond the Debye length. The
presence of such a long-range interaction between dust particles is
manifested experimentally as a formation of dust chain.24–26

A quantum/semiclassical approach reveals the effect of a pair
interaction as a result of emission of a quasiparticle by a particle, fol-
lowed by absorption of the quasiparticle by another particle. In other
words, the approach reveals the effect as a result of exchange of virtual
plasma wave between a pair of dust particles.27 In the present study,
we take an approach for the pair interaction of dust particles as a con-
nected oscillator in a complex plasma through the exchange of quasi-
particles.

As was pointed out in the recent paper,28 the present approach
with quantum mechanical viewpoint describes the interaction of dust
particles-plasma waves or of dust particles themselves. We emphasize
here that our approach is for classical plasma system, not for the so-
called misleading quantum dusty plasmas,29 with the application of
quantum viewpoints.

In Sec. II, Hamiltonian description is reviewed for a complex
plasma in which dust–wave interaction takes place. In Sec. III, the sec-
ond quantization is introduced to describe wave–particle interaction in
a complex plasma and the semiclassical entanglement between a pair
of dust particle is introduced. In Sec. IV, the properties of the semiclas-
sical entanglement are described through the comparison with a quan-
tum entanglement. In Sec. V, the entropy is introduced to measure the
semiclassical entanglement involved in the interaction between a pair
of dust particles. Section VI concludes the paper with discussion.

II. HAMILTONIAN DESCRIPTION FOR DUST-WAVE
INTERACTION14,27

We consider a collection of dust particles placed in a plasma,
where electrostatic plasma waves are present. The Hamiltonian for
charged dust particles placed in an electrostatic field carried by a
plasma wave is given by

H ¼
X
j

1
2mj

pj � ZjeA xj; tð Þ� �2 þ e0
2

ð
d3x E x; tð Þð Þ2; (1)

where mj is the mass of the jth dust particle with charge Zje placed at
xj at time t with momentum pj, A xj; tð Þ is the vector potential of the
field and the summation is taken for all the particles in the system,
E x; tð Þ is the electric field, e0 is the permittivity of free space, and

pj�ZjeA xj; tð Þ� �2 ¼ pj�ZjeA xj; tð Þ� � � pj�ZjeA xj; tð Þ� �
, E xj; tð Þ� �2

¼ E x; tð Þ �E x; tð Þ. The Hamiltonian can be expressed as

H ¼ Hk þ HI þ Hosc; (2)

where

Hk ¼
X
j

1
2mj

pj
2; (3)

is the kinetic energy of dust particles,

HI ¼ �
X
j

Zje

2mj
pj � A xj; tð Þ þ A xj; tð Þ � pj
� �

(4)

is the interaction Hamiltonian and

Hosc ¼
X
j

Zjeð Þ2
2mj

A x; tð Þð Þ2 þ e0
2

ð
d3x E x; tð Þð Þ2 (5)

is the oscillating energy accompanied by the fields. We describe the
vector potential by using the time-dependent field coordinate qjkðtÞ
associated with plasma waves of wavenumber k as

A xj; tð Þ ¼
X
k

ffiffiffiffiffiffiffiffiffiffiffiffi
1

e0Vk2

r
qjk tð Þkeik�xj ; (6)

where k2 ¼ k � k and V is the volume of the system. The electric field
E is given in terms of the vector potential by

E xj; tð Þ ¼ � @A xj; tð Þ
@t

¼ �
X
k

ffiffiffiffiffiffiffiffiffiffiffiffi
1

e0Vk2

r
_qjk tð Þkeik�xj

¼
X
k

ffiffiffiffiffiffiffiffiffiffiffiffi
1

e0Vk2

r
pj�k tð Þkeik�xj ; (7)

where

_qjk tð Þ ¼ @qjk tð Þ
@t

¼ �pj�k tð Þ: (8)

The conditions for real E andA require

pjk ¼ �p�j�k; qjk ¼ �q�j�k; (9)

with � indicating complex conjugate. The interaction Hamiltonian is
expressed as

HI ¼ �
X
j

X
k

Zje

mj

ffiffiffiffiffiffiffiffiffiffiffiffi
1

e0Vk2

r
k � pj �

�hk
2

� �
qjke

ik�xj ; (10)

where we used the relation eik�xjk � pj ¼ k � pj � �hk � k� �
eik�xj with

pj ¼ �i�hrj. It was shown
27 that the interaction Hamiltonian describes

the interaction of two dust particles through the exchange of virtual
longitudinal plasma waves (ion acoustic waves), resulting in the forma-
tion of wake potential in the presence of ion flow. Figure 1 shows that
collisions of two particles in space are modified as collisions exchanging
virtual waves in a plasma. A pair of dust particles (designated as d) car-
rying momenta p and p0 interact through the exchange of a virtual pho-
non characterized by (k; xk), resulting in the new momenta p� �hk
and p0 þ �hk. The formation of wake potential by a dust particle placed
in the ion acoustic wave with ion flow19–23 was interpreted as a result of
a pair of dust particles exchanging virtual plasma waves. The theoretical
work27 showed a successful example of Hamiltonian approach applied
to a classical phenomenon.
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Here, in the present study, we focus on the oscillatory part of the
Hamiltonian. The oscillating part of the Hamiltonian can be expressed
as

Hosc ¼ � 1
2

X
j;k

x2
jdqjkqj�k � 1

2

X
k

pjkpj�k ; (11)

where xjd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zjeð Þ2=e0Vmj

q
is a dust plasma frequency and we usedP

k0 qkqk0k � k0exp i k þ k0ð Þ � x½ � ¼ �qkq�kk2 for the first term andÐ
d3x exp iðk þ k0Þ � x� � ¼ Vd�k;k0 for the second term in the right-

hand side of Eq. (11). Since the longitudinal plasma waves are heavily
damped for the large wavenumber even in a complex plasma, the uni-
tary transformation may introduce the wavenumber summation for
k < kc; a critical wavenumber known as a Debye wavenumber. Our
procedure here follows the one introduced by Bohm and Pines in 195314

and later applied to a complex plasma by Ishihara and Vladimirov in
1998.27 We now introduce destruction operator ajk tð Þ and creation
operator a†jk tð Þ through linear combination of pjk and qjk as

ajk tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@xe=@xð Þxjk

4�hxjk

s
xjkqjk tð Þ � ipj�k tð Þ� �

; (12)

a†jk tð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@xe=@xð Þxjk

4�hxjk

s
xjkqj�k tð Þ þ ipjk tð Þ� �

: (13)

Here, we introduced the screening effect of plasma waves with a
plasma dielectric function e ¼ eðxjk; k) and used xj�k ¼ xjk . We
insert a factor to make ajk tð Þ dimensionless in Eqs. (12) and (13). A
commutation relation is given by

½ajk; aj0k0 � ¼ ½a†jk; a†j0k0 � ¼ 0; (14)

ajk; a
†
j0k0

h i
¼ djj0dkk0 ; (15)

where A; B½ � ¼ AB� BA and dkk0 is a Kronecker delta indicating zero
for k 6¼ k0 and unity for k¼ k0. We postulate that pjk and qjk are oper-
ators satisfying

qjk; qjk0½ � ¼ pjk; pjk0½ � ¼ 0; (16)

qjk; pjk0½ � ¼
2

@xe=@xð Þxjk

i�hdkk0 : (17)

The oscillatory part of the Hamiltonian is now expressed as

Hosc ¼
X
jk

�hxjk

@xe=@xð Þxjk

a†jkajk þ ajka
†
jk

h i

� 1
2

1� x2
jd

x2
jk

 !
a†jkajk þ ajka

†
jk � ajkajk � a†jka

†
jk

	 
#
: (18)

We now introduce a canonical transformation to see the nature of col-
lective oscillations more clearly. We write

Oold ¼ e�
i
�hSOnewe

i
�hS � Onew � i

�h
S;Onew½ �: (19)

A generating function of the canonical transformation is introduced as

S ¼ i
X
jk

ajkAjke
ik�Xj � e�ik�XjA†

jkajk
	 


; (20)

where

ajk ¼ Zje

mj

�h
e0Vk2xjk @xe=@xð Þxjk

" #1
2 k � ðPj � �hk=2Þ
xjk � k � Pj=mj þ �hk2=2mj

:

(21)

The transformation changes the variables from ðx; p; a; a†Þ to
ðX;P; A; A†Þ. We note that

pjk � Pjk �
X
k

k ajkAjke
ik�Xj þ eik�XjA†

jkajk
	 


; (22)

ajk � Ajk þ 1
�h
e�ik�Xjajk; (23)

a†jk � A†
jk þ

1
�h
ajke

ik�Xj : (24)

The harmonic oscillator Hamiltonian for a system of two dust
particles (j¼ 1,2) with oscillatory frequenciesx1k and x2k is found as

FIG. 1. Dust–dust interaction through the exchange of virtual plasma wave. The interaction of two particles in space (left) can be expressed as the interaction of two particles in
the presence of a virtual wave in a plasma (right). A pair of dust particles designated as d with momenta p and p0 interact by exchanging a virtual plasma wave with wavenum-
ber k and frequency xk. After the interaction, the dust particles carry momenta p� �hk and p0 þ �hk. The interaction forms a classical wake potential in the presence of ion
flow. The pair of dust particles shows the uncoupled harmonic oscillation.
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HHO ¼
X
k

2�hx1k

@xe=@xð Þx1k

A†
1kA1k þ

1
2

� �"

þ 2�hx2k

@xe=@xð Þx2k

A†
2kA2k þ

1
2

� �#
; (25)

where x2
jd � x2

jk was used and commutation relations, ½Ajk; Aj0k0 �
¼ A†

jk; A
†
j0k0

h i
¼ 0 and ½Ajk; A

†
j0k0 � ¼ djj0dkk0 were used. The expres-

sion may be simplified as

HHO �
X
k

�hx1k A†
1kA1k þ

1
2

� �
þ �hx2k A†

2kA2k þ
1
2

� �� �
; (26)

with the approximation @xe=@xð Þxk
¼ @x 1� x2

d=x
2

� �
=@x

� �
xk�xd

� 2. In a complex plasma characterized by charge neutrality as a whole
system, a dust acoustic wave is characterized by the dust acoustic veloc-
ity defined by the dust mass and plasma temperature,30 allowing the
matching of the frequencies between the waves and dust oscillations.
The operators A†

1kA1k and A†
2kA2k may be interpreted to have eigen-

values of positive integers in quantum mechanical description with the
energy eigenvalue En ¼ �hxk nþ 1=2ð Þ, where n is a positive integer.
This expression indicates that the system is composed of two
uncoupled oscillators. We note here that the operators Ajk and A†

jk are

assumed to obey the commutation relations, resulting in the factors 1/2
in Eq. (26), but even without the commutation relations, the harmonic
oscillator expression with Ajk and A†

jk will remain in the classical sys-

tems considered in the present study.
To further discuss the problem of oscillators, we restrict our

model to a simple one-dimensional harmonic oscillator given by a
Hamiltonian,31

H ¼ 1
2l

p2 þ 1
2
Kx2; (27)

where l is a mass of an oscillating body, K is a spring constant, p is a
momentum and x is a displacement. The corresponding one-
dimensional wave function for a system of two oscillators of one with
coordinates X1 and the other with X2 as a solution of Schr€odinger
equation may be given by the product of two functions

wn;m X1;X2ð Þ ¼ vn X1ð Þvm X2ð Þ (28)

with

vn X1ð Þ ¼ 1
p

� �1
4 1ffiffiffiffiffiffiffiffiffi

2nn!
p Hn X1ð Þe�

X2
1
2 ; (29)

vm X2ð Þ ¼ 1
p

� �1
4 1ffiffiffiffiffiffiffiffiffiffiffi

2mm!
p Hm X2ð Þe�

X2
2
2 ; (30)

where the displacement X is normalized by �h2=lK
� �1=4

, Hn Xð Þ is the
Hermite polynomials of the n-th degree with the normalization
relation ð

vm Xð Þvn Xð ÞdX ¼ dmn: (31)

Form ¼ n ¼ 0,

w0;0 X1;X2ð Þ ¼ 1ffiffiffi
p

p e�
1
2 X2

1þX2
2ð Þ: (32)

Equations (29) and (30) are known as normalized simple harmonic
oscillator wave functions.32 In a quantum mechanical system, the wave
functions are used to find probability of the results of any
measurements.

III. ENTANGLEMENT FOR A PAIR OF DUST PARTICLES

We have seen in Sec. II that a system of a pair of particles (dust
particles) can be described as uncoupled oscillators. The wave function
is given by a product of two independent wave functions. The presence
of such a wave function indicates that two particles are in the state not
entangled each other. We now consider a situation in which a pair of
particles are embedded in the background waves characterized by
ðxk; kÞ and interact each other in the presence of external wave (k)
characterized by a wavenumber q and frequency xq. As shown in
Fig. 2, a pair of particles with momenta p and p0 will have momenta
p� �h k � q=2ð Þ and p0 þ �h k þ q=2ð Þ after the interaction. In the
interaction described in Fig. 2, a dust particle with momentum p emits
a quasiparticle (a virtual wave) with frequency x1k ¼ xk � xq=2 and
wavenumber k � q=2, which is absorbed by an incoming quasiparticle
[the external wave (k)] characterized by ðxq; qÞ, then we write

A†
1kA1k ¼ A†

k�q
2
Ak�q

2
: (33)

While the virtual wave k � q=2 is accompanied by the creation of a
dust particle with momentum p� �h k � q=2ð Þ and destruction of a
dust particle with momentum p, the virtual wave absorbs the external
wave characterized by ðxq; qÞ and travels as a virtual wave character-
ized by x2k ¼ xk þ xq=2 and wavenumber k þ q=2. A dust particle
with momentum p0 absorbs the virtual wave. We write

A†
2kA2k ¼ A†

kþq
2
Akþq

2
: (34)

The virtual wave k þ q=2 is accompanied by the creation of a dust
particle with momentum p0 þ �h k þ q=2ð Þ and destruction of a dust
particle with momentum p0. The harmonic oscillator Hamiltonian
given by Eq. (26) is studied in detail by following the procedure devel-
oped earlier.33–38 We define operators B in terms of A as

B†
1k ¼ A1k þ A†

2kffiffiffi
2

p ; B1k ¼ A†
1k þ A2kffiffiffi

2
p ; (35)

FIG. 2. A pair of dust particles interact each other in the presence of background
waves with frequency xk and the injected wave with frequency xq. The pair shows
the coupled harmonic oscillation.
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B†
2k ¼

A1k � A†
2kffiffiffi

2
p ; B2k ¼

A†
1k � A2kffiffiffi

2
p ; (36)

and using the commutation relations for B operators, we obtain

HHO ¼
X
k

�
�hxk B†

1kB1k þ B†
2kB2k þ 1

� �

� �hxq

2
B†
1kB2k þ B†

2kB1k þ 1
� ��

: (37)

We note here that the operators Bjk and B†
jk are assumed to obey the

commutation relations, resulting in the factors 1 appeared in Eq. (37).
The presence of terms B†

1kB2k and B
†
2kB1k involving the cross-products

suggests the two coupled oscillators.
To see the coupling situation, we introduce a rotational transfor-

mation of coordinates known as a squeeze transformation, related to
the representation of Lorentz group.34–36 We introduce transformation
from one set of coordinates

X ¼ X1

X2

� �
(38)

to another set

X0 ¼ X0
1

X0
2

 !
(39)

by

X0 ¼ TX; (40)

where

T ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p 1 �b
�b 1

� �
(41)

with a constant b (�1 � b � 1) expressed through a parameter g,
known as a squeezing parameter, as

b ¼ tanh g; (42)
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p ¼ cosh g; (43)

bffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p ¼ sinh g; (44)

and

X ¼ T0X0; (45)

where

T0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p 1 b
b 1

� �
: (46)

We note the relation

TT0 ¼ 1 0
0 1

� �
: (47)

The wave function is now

w0;0 X0
1;X

0
2

� � ¼ v0 X0
1

� �
v0 X0

2

� �
; (48)

which can be evaluated by

v0 X0
1

� �
v0 X0

2

� � ¼X1
n¼0

X1
n0¼0

Ann0vn X1ð Þvn0 X2ð Þ (49)

with a condition
P

nn0 Ann0ð Þ2 ¼ 1. The coefficient Ann0 may be evalu-
ated by

Ann0 ¼
ð
vn X1ð Þvn0 X2ð Þv0 X0

1

� �
v0 X0

2

� �
dX1dX2

¼ 1
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþn0n!n0!

p
ð
Hn X1ð ÞHn0 X2ð Þe�1

2 X2
1þX2

2þX02
1 þX02

2ð ÞdX1dX2;

(50)

where we used H0ðX0
1Þ ¼ H0ðX0

2Þ ¼ 1. To evaluate the integration
with respect to X1 and X2, we note the generating function

G s; Xð Þ ¼ e�s2þ2sX ¼
X1
n¼0

sn

n!
Hn Xð Þ (51)

and evaluate the integration

I s; tð Þ ¼
ð
G s;X1ð ÞG t;X2ð Þe�1

2 X2
1þX2

2þX02
1 þX02

2ð ÞdX1dX2: (52)

Noting that X2
1 þX2

2 þX02
1 þX02

2 ¼ 2 X2
1 þX2

2

� �� 2bX1X2

� �
=ð1� b2Þ

and further coordinate transformation X1 ¼ ðu� vÞ= ffiffiffi
2

p
and X2 ¼ ðu

þ vÞ= ffiffiffi
2

p
makes the integration evaluate as

I s; tð Þ ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
e2bst ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q X1
n¼0

2bstð Þn
n!

; (53)

which gives us

Ann0 ¼ bn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
dnn0 : (54)

We obtain the relation

X2
1 þ X2

2 ¼ 1
2

e�2g X0
1 � X0

2

� �2 þ e2g X0
1 þ X0

2

� �2h i
; (55)

where we used 1þb2
� �

= 1�b2
� �

¼ cosh2gþ sinh2g¼ e�2gþ e2gð Þ=2
and 2b= 1� b2

� �
¼ 2 sinh g cosh g ¼ e2g � e�2gð Þ=2. Our wave func-

tion is now expressed as wgðX0
1;X

0
2Þ ¼ w0;0ðX0

1;X
0
2Þ or

wg X0
1;X

0
2

� � ¼ 1ffiffiffi
p

p exp � 1
4

e�2g X0
1 � X0

2

� �2 þ e2g X0
1 þ X0

2

� �2h i
 �
;

(56)

which can be expressed in terms of Ann0 given by Eq. (54) as

wg X0
1;X

0
2

� � ¼X1
n¼0

X1
n0¼0

Ann0vn X1ð Þvn0 X2ð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q X1
n¼0

bnvn X1ð Þvn X2ð Þ: (57)

Equation (56) shows that the wave function is not separable in varia-
bles X0

1 and X0
2 resulting in the entanglement property. Equation (57)

agrees with the two-mode squeezed states introduced to study entan-
glement of formation.39 For the limit of g ! 0 (or b ! 0), we obtain
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wg!0 X0
1;X

0
2

� � ¼ 1ffiffiffi
p

p e�
1
2X

0
1
2
e�

1
2X

0
2
2
; (58)

which is separable in coordinates X0
1 and X0

2. We find that the state of
entanglement appears if g 6¼ 0.

Now we show that the wave function given by Eq. (56) is a solu-
tion for a coupled harmonic oscillator.34–38 For a notational simplicity,
we put x1; x2ð Þ for X0

1;X
0
2

� �
. The physical model for a coupled har-

monic oscillator of two masses of m1 and m2 located at x1 and x2 may
be given by a model Hamiltonian

H ¼ p21
2m1

þ p22
2m2

þ 1
2
k1 x1 � x2ð Þ2 þ 1

2
k2 x1 þ x2ð Þ2; (59)

where k1 and k2 are coupling constants. The model equation may
be rewritten, after coordinate transformation of pj !

ffiffiffiffiffiffiffiffiffiffi
mj=l

p
pj, xj

! ffiffiffiffiffiffiffiffiffiffi
l=mj

p
xj (j¼ 1, 2), in a form as

H ¼ 1
2l

p21 þ p22
� �þ 1

2
k01x

2
1 þ

1
2
k02x

2
2 þ k03x1x2; (60)

where l¼m1m2=ðm1þm2Þ is a reduced mass k01 ¼ lk=m1,
k02 ¼ lk=m2, and k03 ¼ lDk=

ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
with k¼ k1 þ k2ð Þ=2 and

Dk¼ k2 � k1. Further coordinate rotational transformation
p1 ! ðcosaÞp1 þ ðsinaÞp2; p2 !�ðsina Þp1 þ ðcosaÞp2, and x1
! ðcosaÞx1 þ ðsinaÞx2; x2 !�ðsinaÞx1 þ ðcosaÞx2 with angle

a¼ tan�1 Dk
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
=k m2ð�n

�m1Þ�g=2 gives a Hamiltonian without

the cross product of x1x2. On the other hand, it is straightforward to
show, by noting that p1 ¼ �i�h@=@x1, p2 ¼ �i�h@=@x2 and keeping in

mind that spatial coordinates are normalized by �h2=lK
� �1=4

, that

p21 þ p22
� �

wg ¼


�h
ffiffiffiffiffiffiffi
lK

p
e�2g þ e2gð Þ

� lK
2

e�4g x1 � x2ð Þ2 þ e4g x1 þ x2ð Þ2
h i�

wg; (61)

which can be used to express Schr€odinger equation as

Hwg ¼ Ewg; (62)

where

H ¼ 1
2l

p21 þ p22
� �þ 1

4
K e�4g x1 � x2ð Þ2 þ e4g x1 þ x2ð Þ2
h i

; (63)

E ¼ �h

ffiffiffiffi
K
l

s
cosh 2g: (64)

We find that the system has two normal mode frequencies

x1;2 ¼ 1
2

ffiffiffiffi
K
l

s
e62g: (65)

By setting the conditions of vanishing cross products x1x2, the parame-
ters are found as

K ¼
ffiffiffiffiffi
em

p
1þ em

k 4� 2k0 � 1ð Þk0 � 1� k02ð Þk02em
1þ e2m � 2�k0ð Þem

" #1
2

; (66)

g ¼ 1
8
ln

em
4� k02

1þ e�1
m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2� k02ð Þe�1

m þ e�2
m

q� �2�����
����� (67)

with k0 ¼ Dk=k and em ¼ m1=m2, which in the limiting case of
k0 ¼ 1,

K !
k0¼1

ffiffiffiffiffiffiffiffi
3em

p
1þ em

k; (68)

g !
k0¼1

1
8
ln

em
3

1þ e�1
m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�1

m þ e�2
m

q� �2�����
�����: (69)

The parameter g depends only on the mass ratio and is given by
g ¼ ln 3ð Þ=8 for em ¼ 1 and g � ln 4emð Þ=8 for em � 1. We find two
normal modes from Fig. 2 together with Eq. (37) as

x1;2 ¼ xk6
xq

2
: (70)

By taking the ratio of two normal mode frequencies, we obtain

e4g ¼ xk þ xq=2
� �

xk � xq=2
� �

�����
�����; (71)

which, with the approximation lnð16xÞ � 6x � x2=26x3=3�…,
results in

g � xq

4xk
: (72)

With the help of Eq. (69), we obtain required frequency of the external
wave to introduce the entanglement as

xq � 1
2

1þ ln emð Þxd !
em¼1

1
2
xd; (73)

where we set xk � xd (dust plasma frequency) and ln em ¼ 0 for a
pair of dust particles with equal mass. Thus, we find that a pair of dust
particles are entangled only when the external wave with frequency
given by Eq. (73) is injected into the complex plasma in consideration.

IV. SEMICLASSICAL PROPERTIES
OF THE ENTANGLEMENT IN A COMPLEX PLASMA

In Sec. III, we showed that a system of a pair of dust particles
placed in a complex plasma becomes the state of the entangle-
ment only if the system is exposed to the external wave. In this
section, we elaborate the present process through the comparison
with conventional quantum entanglements. Since the nature of
the entanglement in this study is not quite the same as the con-
ventional quantum entanglement, the present entanglement is
called as a semiclassical entanglement.

The present quantum mechanical approach (semiclassical
approach), especially the second quantization approach, reveals a new
aspect in the classical coupling of a pair of dust particles. While a clas-
sical interaction between two particles involves direct encounter of two
particles, a semiclassical picture of the interaction between negatively
charged dust particles in a plasma includes the exchange of a virtual
wave between two dust particles. Figure 3 shows schematically the pro-
posed process resulting in the semiclassical entanglement in a complex
plasma. Figure 3(a) shows a system of uncoupled oscillators described
by the wave function wn;mðX1;X2Þ with coordinates X1 and X2 of two
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dust particles embedded in a background wave (k) in a complex
plasma. The wave function of the two-particle system is described by
the product of two functions vn X1ð Þ and vm X2ð Þ indicating a separable
wave function. The probability to find a particle at X1 and another at
X2 is given by the square of the absolute value of product of the two
independent wave functions, indicating no entanglement. Keeping in
mind that �hxkA

†
kAkðk ¼ 1k; 2kÞ in Eq. (26) corresponds to the

energy spectrum of plasma oscillations, the Hamiltonian for the har-
monic oscillators is expressed in a semiclassical way as

HHO ¼
X
k

�hx1kA
†
1kA1k þ �hx2kA

†
2kA2k

� �
: (74)

Figure 3(b) shows the coupled oscillators embedded in a background
wave (k) in the presence of external wave (q) injected into a complex
plasma. The coordinates are rotationally transformed from X to X0

and the wave function becomes wg X0
1;X

0
2

� �
which is shown to be not

separable. Such a non-separable situation is manifested only through
the second quantization by changing modes A(A1k, A2k) to B(B1k, B2k).
Since the term �hxk � �hxq=2 in the square bracket of Eq. (37) is sim-
ply a pure quantum effect by the use of commutation relations, the
harmonic oscillator Hamiltonian in the semiclassical expression is
given by

HHO¼
X
k

�hxk B†
1kB1kþB†

2kB2k

� ���hxq

2
B†
1kB2kþB†

2kB1k

� �� �
:

(75)

The B mode has interacting parts expressed by B†
1kB2k þ B†

2kB1k , indi-
cating the correlation of two dust particles. The nonzero squeezing
parameter g, which is defined by the frequency ratio between the exter-
nal wave xq and the virtual wave xk , controls the emergence of the
semiclassical entanglement. Figure 3 is reminiscent of the Maxwell’s
Demon, who operates a trapdoor to control fast-moving and slow-
moving gas molecules, sitting at the origin of the coordinates who
switches on the radiation to initiate the entanglement.

A complex plasma is formed by charged dust particles sur-
rounded by ions, electrons, and neutrals. We focus on a pair of dust
particles in the complex plasma. The interaction of two dust particles
is accompanied by the interchange of a quasiparticle, a wave

characterizing the collective nature of background plasma. Thus, the
present system is dealing with macroparticles (dust particles) in the sea
of microsystem (composed of plasma particles). The present system is
written, with the help of second quantization, in a non-separable wave
function form only when the system is subject to the external wave.
Then, the semiclassical entanglement appears only in coordinates in a
squeeze transformation or in a squeezed state, where the modes A
(A†;A) change to modes B(B†; B). As is seen in Eq. (74), the process
described by mode A is closest to the classical state, while the mode B,
as is shown in Eq. (75), describes the process next to closest to the clas-
sical state. Thus, the entanglement is characterized by a semiclassical
nature, not by quantum nature.

The wave function associated with the semiclassical entanglement
is given by Eq. (56) which represents a probability wave and the ampli-
tude of wg X0

1;X
0
2

� �
is the probability amplitude of finding two dust

particles at X0
1 and X0

2. The two negatively charged dust particles are
forming a pair like a Cooper pair in a superconductivity and were
described in the context of wake potential formation.27 Formation of
the pair is symbolized by the presence of a virtual wave connecting two
dust particles. The wave function described by Eq. (56) is the manifes-
tation of non-separable nature if g 6¼ 0.

The direct observation of the present semiclassical entanglement
may be difficult to achieve because of the squeezed state in a trans-
formed coordinates. One of the important quantities to identify the
emergence of the entanglement is the entropy and will be discussed in
detail in Sec. V. Here, we briefly comment on the difference of the
semiclassical entanglement from the quantum entanglement, especially
related on the measurement. In the semiclassical entanglement, a pair
of dust particles move in an interconnected manner like a Cooper pair,
but not like composite quantum objects, e.g., electrons with spins or
photons with polarizations. A pair of dust particles are not composite
quantum objects which can be split apart to make quantum entangle-
ment. Classical processes, including the present semiclassical entangle-
ment, are inherently local allowing the measurement independently,
while the quantum entanglement is inherently nonlocal. The quantum
entanglement involves the EPR (Einstein–Podolsky–Rosen) pairs and
a wave function collapse,40 while the recent theory on the uncertainty
predicts the possible simultaneous measurements of position and
momentum.41,42

FIG. 3. Model of coupled oscillators for a
pair of dust particles placed in a complex
plasma. (a) Uncoupled oscillators. Two
dust particles, X1 and X2 in the coordi-
nates X, interact each other through the
exchange of virtual wave with wave num-
ber k. (b) Coupled oscillators in the pres-
ence of external wave with wave number
q. The coordinates X are transformed into
X0 through the squeeze transformation:
X0 ¼ TX; T¼T(g), and g¼ tanh�1b.
The squeezing parameter g controls the
entanglement.
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V. ENTROPY FOR ENTANGLEMENT

Two-particle entanglements were studied for quantum states
including two-electron system, two-photon system and atom-photon
system.10 In Secs. II–IV, we have shown that two-particle semiclassical
entanglement is possible in a complex plasma. Our question is how to
measure the entanglement in our macroscopic system. We evaluate
the entropy of the entanglement in our system as a measure of
entanglement.

First, briefly review the concept of entropy. Consider a system of
strings with a total of n binary digits in which 0 occurs with probability
1� p and 1 occurs with probability p. Typical binary digits will con-
tain nð1� pÞ zeros and np ones. The number of typical strings is of
order 2nHðpÞ, where HðpÞ ¼ log n!= ðnpÞ! nð1� pÞð Þ!½ �� �

with base 2
in the logs. The Stirling approximation, logn! ’ n logn� n forn� 1,
is used to obtain

H pð Þ � � p log pþ 1� pð Þlog 1� pð Þ� �
: (76)

HðpÞ is known as entropy function in the theory of information.
When the ensemble of n letters each of which has a distribution X, the
entropy is given by

H Xð Þ ¼ �
X

X
p Xð Þlog p Xð Þ (77)

known as Shannon entropy.43,44

The analogy can be applied to an interaction between particles in
the system in consideration. The n binary digits may be considered as
energy levels. The binary digits may correspond to the Fermion eigenval-
ues of the number operators. Let N(k) be the number of particles with
momentum pð¼�hkÞ in a second quantization formalism. If the particles
are fermions N(k)¼ 0 or 1. At each energy level a factor 1� NðkÞ
appears if they are created, while NðkÞ appears if they are destroyed. If
the particles are bosons N(k)¼ 0,1,2,…. At each energy level, a factor
N kð Þ þ 1 appears if they are created, while NðkÞ appears if they are
destroyed. If the created particles are fermions, N(k)¼ 1 then the factor
1� NðkÞ for the creation is zero suggesting that the transition to occu-
pied states are forbidden. The entropy is given by45,46

S ¼ kB
X
k

�N kð ÞlnN kð Þ þ 1þ N kð Þ½ �ln 1þ N kð Þ½ �� �
; (78)

for bosons and

S ¼ �kB
X
k

N kð ÞlnN kð Þ þ 1� N kð Þ½ �ln 1� N kð Þ½ �� �
; (79)

for fermions, where kB is a Boltzmann’s constant and ln is a natural
logarithm. It is obvious that there is a similarity between Eqs. (76) and
(79). We note that in a classical limit NðkÞ 	 1, so the entropy given
by Eqs. (78) and (79) is given by

S ¼ �kB
X
k

N kð ÞlnN kð Þ; (80)

in agreement with Shannon entropy given by Eq. (77). We consider
the interaction between dust particles as described in Fig. 2. We change
the notations of variables and write xq; qð Þ for the virtual wave and
xq0 ; q0ð Þ for the external wave. An equation for the rate of change of
NðkÞmay be written schematically as

(81)

where in the schematic representation the virtual waves are omitted and
the external wave is designated as k. The first term in the
right-hand side indicates the process in which a dust particle with
momentum �hkð¼pÞ, together with a dust particle with momentum
�hk0ð¼p0Þ, is produced through the interaction between two dust par-
ticles by absorbing external waves with energy �hx0 and momentum
�hq0. The second term shows the process in which a dust particle with
momentum �hk is removed accompanied by the emission of the wave
with energy �hx0 and momentum �hq0. The mathematical expression
for the equation may be obtained by replacing each schematic diagram
by the corresponding transition probability per unit time from an initial
state i to a final state f together with the application of the Fermi golden
rule.46–48 Thus, we obtain

@

@t
N kð Þ ¼

X
k0

X
q

2p
�h

Mfij j2d Ef � Eið Þ; (82)

whereMfi is the matrix element for the transition given by

Mfij j2 ¼ v qð Þ�� ��2F k; k0; q
� �

; (83)

where v qð Þ is the Fourier transform of the interaction potential depict-
ing the potential energy between dust particles and

F k; k0; q
� � ¼ f1 k; k0; q

� �� f2 k; k0; q
� �

(84)

with

f1 k; k0; q
� � ¼ 1� N kð Þ½ � 1� N k0ð Þ½ �N k1ð ÞN k2ð ÞNk q0ð Þ; (85)

f2 k; k0; q
� � ¼ 1� N k1ð Þ½ � 1� N k2ð Þ½ �N kð ÞN k0ð Þ 1þ Nk q0ð Þ� �

;

(86)

where k1 ¼ k þ q� q0=2; k2 ¼ k0 � q� q0=2; and Nk q0ð Þ is the
number of quasi-particles (k) with momentum �hq0. Here, we consider
particles as fermions and quasi-particles as bosons. For the case
particles are bosons, the procedure follows by replacing 1� N kð Þ by
1þ N kð Þ etc., but the choice of fermions or bosons for particles will
have no real consequences in the classical systems considered in the
present study. Ef � Ei are the energy difference between the final
energy and the initial energy in the system given by

Ef � Eij j ¼ �h2 kj j2
2m1

þ �h2 k0j j2
2m2

�����
� �h2

2m1
k þ q� q0

2

����
����
2

þ �hxq0 þ
�h2

2m2
k0 � q� q0

2

����
����
2

 !�����:
(87)
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From the condition Ef ¼ Ei, we obtain the frequency of the external
wave as

xq0 ¼
�h
m1

k � q0
2
� q

� �
þ �h
m2

k0 � q0
2
þ q

� �

� �h
1

2m1
q� q0

2

����
����
2

þ 1
2m2

qþ q0
2

����
����
2

 !
: (88)

We proceed to find the time change of the entropy. We differenti-
ate Eq. (79) with respect to time

dS
dt

¼ �kB
X
k

@N kð Þ
@t

lnN kð Þ � ln 1� N kð Þ½ �� �
: (89)

Using Eq. (82), we get

dS
dt

¼� kB
X
k

X
k0

X
q

2p
�h

v qð Þ�� ��2d Ef � Eið Þ


 F k; k0; q
� �

lnN kð Þ � ln 1� N kð Þ½ �� �
: (90)

The sum over k, k0; and q may be carried out by the use of the change
of variables. We call Eq. (90) as the first equation. The second equation
is by changing variables in the first equation as k ! k þ q� q0=2,
k0 ! k0 � q� q0=2; and q ! �q. The third equation is by changing
variables in the second equation as k ! k0 and k0 ! k and q ! �q.
The fourth equation is by changing variables in the first equation as
k ! k0 and k0 ! k and q ! �q:

dS
dt

¼� 1
4
kB
X
k

X
k0

X
q

2p
�h
d Ef � Eið Þ


 v qð Þ�� ��2F k; k0; q
� �

lnN kð Þ � ln 1� N kð Þ½ �� �
þ v �qð Þ�� ��2F k1; k2;�qð Þ lnN k1ð Þ � ln 1� N k1ð Þ½ �� �
þ v qð Þ�� ��2F k2; k1; qð Þ lnN k2ð Þ � ln 1� N k2ð Þ½ �� �
þ v �qð Þ�� ��2F k0; k;�q

� �
lnN k0ð Þ � ln 1� N k0ð Þ½ �� �

: (91)

Noting that v qð Þ�� �� ¼ v �qð Þ�� ��, we obtain
dS
dt

¼ 1
4
kB
X
k

X
k0

X
q

2p
�h

v qð Þ�� ��2d Ef � Eið Þ


 f1 k; k0; q
� �� f2 k; k0; q

� �� �
ln f1 k; k0; q

� �� ln f2 k; k0; q
� �� �

;

(92)

where f1 k; k0; q
� �

and f2 k; k0; q
� �

are given by Eqs. (85) and (86).
Since f1 � f2ð Þ ln f1 � ln f2ð Þ > 0 for any f1 and f2ð6¼ f1Þ and f1 � f2ð Þ

 ln f1 � ln f2ð Þ ¼ 0 for f1 ¼ f2, we obtain

dS
dt

� 0: (93)

In the classical limit, N kð Þ 	 1 or 16N kð Þ ! 1 and Nk q0ð Þ
� 1 or 1þ Nk q0ð Þ ! Nk q0ð Þ. The classical external wave frequency,
by letting p ¼ �hk, p0 ¼ �hk0, q ! 0 and �h ! 0, is given by

xq0 ¼
1
2

p
m1

þ p0

m2

� �
� q0: (94)

We note that the number of particlesNðkÞ is the particle number den-
sity in a classical limit. We now introduce a density matrix as a statisti-
cal description. We consider a system of coupled oscillators in which
one set of oscillators is located at x1; x2ð Þ and the other at x01; x

0
2

� �
described by wave functions wgðx1; x2Þ and wg x01; x

0
2

� �
. If we observe

two sets of coordinates in the system in consideration, we may define a
pure-state density matrix as45,49

. x1; x2; x
0
1; x

0
2

� � ¼ wg x1; x2ð Þwg x01; x
0
2

� �
: (95)

If we can observe coordinates x1ð¼xÞ and x01ð¼x0Þ, but not x2 and x02,
it is appropriate to define the density matrix defined by

. x; x0ð Þ ¼
ð
wg x; x2ð Þ wg x0; x2ð Þ

h i�
dx2; (96)

where the integration is extended only over the coordinates x2ð¼x02Þ.
The entropy may be defined by taking the sum of the diagonal element
of a matrix or trace of the matrix

S ¼ �kBTr . ln qð Þ: (97)

When we perform the integration in Eq. (96) over x2 from �1 to1,
we obtain

. x; x0ð Þ ¼ p cosh 2gð Þ�1
2 x � x0ð Þ2 þ x þ x0ð Þ2 cosh 22g
h i


 exp � 4 cosh 2gð Þ�1
� �

(98)

or

. x; x0ð Þ ¼ 1� b2
� �X

n

b2nvn xð Þvn x0ð Þ; (99)

where b ¼ tanh g as defined in Eq. (42) and vn xð Þ is the n-th excited
state oscillator wave function defined by Eq. (29). We find the trace in
Eq. (97) as

Tr . lnqð Þ ¼
ð
dx dx0. x; x0ð Þln . x0; xð Þ: (100)

To carry out the integration, we note

X1
n¼0

tanh2ng ¼ 1

1� tanh2g
(101)

X1
n¼0

tanh2ng ln tanh2ng
� �

¼ tanh2g ln tanh2g
� �

1� tanh2g
� �2 (102)

ln cosh�2g
� �

¼ �2 cosh 2g� sinh2g
� �

ln cosh gð Þ: (103)

We obtain

S ¼ 2kB cosh2g ln cosh gð Þ � sinh2g ln sinh gð Þ
� �

; (104)

which may be expressed in terms of the parameter b as

S ¼ �kB
b2

1� b2
ln b2 þ ln 1� b2

� �" #
; (105)

in agreement with the entanglement entropy evaluated for a squeezed
state.50,51 With the approximations coshg!

g!0
1þ g2=2!þ g4=4!…;

sinhg!
g!0

gþ g3=3!þ g5=5!…; and lnð1þ eÞ !
e!0

e� e2=2þ e3=3�…,

we get
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S !
g!0

kBg
2 1� 2 ln gð Þ: (106)

The entropy of the entanglement is always positive or S > 0 for non-
zero g. We note that the criterion S¼ 0 indicates no entanglement in
the system. The entropy for a pair of dust particles with equal mass is
estimated to be 0.08 in the unit of kB (Boltzmann constant). On the
other hand, the entropy for the two-electron system is reported to be
0.02–0.08 depending on the model,52 while the theory for the two-
electron system predicts to be ln 2 � 0:693. The estimating entropy
remains to be challenging experimentally or computationally.53

VI. DISCUSSION AND CONCLUSIONS

We have introduced the concept of semiclassical entanglement in
a complex plasma. Our quantum mechanical approach to the dust–
wave interaction reveals that the injection of the external wave into a
two-particle system in a complex plasma plays a key role in the emer-
gence of entanglement. The two-particle system is composed of two
dust particles, massive and highly charged. First, we showed that dust
particles in a complex plasma form a pair by exchanging virtual waves
between two dust particles and can be viewed as uncoupled harmonic
oscillators, which are not entangled. Then, we showed that a pair of
dust particles can be described as a coupled harmonic oscillator only
when the external wave is injected. The pair of dust particles exposed
in the wave with frequency of half of the dust plasma frequency is
shown to be entangled. The entropy is introduced as a measure of the
entanglement for the pair of dust particles.

Our approach is to apply a quantum mechanical viewpoint to a
classical plasma phenomenon. Such an approach has been successful
in revealing some new aspects in the wave–particle interaction in plas-
mas/complex plasmas, otherwise overlooked in traditional classical
approaches. Two examples are shown here.

First example: the Landau damping/growth in a plasma. Landau
damping is a collective medium effect of plasma particles and is treated
as the absorption process against the emission process in the quasipar-
ticle–particle (wave–particle) interaction.17,18,54 The spontaneous emis-
sion of quasi-particles by plasma particles17,18,55 and the transition
probability in the wave–wave interaction56 appeared by taking the clas-
sical limit. Those physical processes were neglected in the traditional
classical treatment and described only by the method of quantum
mechanics by using Planck’s constant explicitly.

The second example is the wake potential formation in a complex
plasma.19–22 The quantum mechanical approach revealed that a pair of
charged dust particles is formed only when both charges move
together, or alternatively stationary in a moving frame like in the ion
flow, through the exchange of virtual phonons (quanta of ion acoustic
waves) and the resulting attraction between two negatively charged
dust particles.27 Two dust particles behave like a Cooper pair. In a clas-
sical picture, a charged dust particle forms an oscillating wake potential
due to the modification of Debye shielding in the presence of ion flow
accompanied by the ion acoustic wave.

The semiclassical entanglement described in the present paper is
found only through the quantum mechanical approach to the complex
plasma.

We note that a quantum mechanics is essentially a single-particle
theory applied traditionally to quantum-scale subatomic systems, while
a kinetic plasma theory is a cooperative-medium theory applied to a col-
lection of plasma particles. The quantum mechanical viewpoint applied

to a plasma theory or even to a complex plasma theory is a synthesis of
the theories and allows the situation with the dispersive properties of
ambient medium. The quantum mechanical calculations are often
found to be more straightforward and easier to understand the underly-
ing physics. In our quantum mechanical view applied to a classical sys-
tem of plasmas, the charged particles could be electrons, massive ions or
even macroparticles like dust particles, while the plasma waves are
treated as quasi-particles. It is interesting to note that quantummechani-
cal approach has been successfully applied to point-like macro-objects
including large cosmic objects such as black holes involved in gravita-
tion.57–61 It is now shown that there is a long-range entanglement across
the event horizon, or between the inside and outside of a black hole.62

The quantum entanglement was considered to be manifestation
of quantum phenomena involving subatomic particles. However, the
recent observations of entanglements have extended the concept from
microscopic to macroscopic-scale objects.9,63,64 Our study involves
macroscopic dust particles in a classical system and the present
research on semiclassical entanglement may shed a light on the devel-
opment of the concept of entanglement in some new directions.
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