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Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a

cylindrical liner

M. R. Weis,' P. Zhang," Y. Y. Lau,"® P. F. Schmit,® K. J. Peterson,® M. Hess,?

and R. M. Gilgenbach'

'Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor,
Michigan 48109-2104, USA
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(Received 20 January 2015; accepted 5 March 2015; published online 24 March 2015)

This paper analyzes the coupling of magneto-Rayleigh-Taylor (MRT), sausage, and kink modes in
an imploding cylindrical liner, using ideal MHD. A uniform axial magnetic field of arbitrary value
is included in each region: liner, its interior, and its exterior. The dispersion relation is solved
exactly, for arbitrary radial acceleration (-g), axial wavenumber (k), azimuthal mode number (1),
liner aspect ratio, and equilibrium quantities in each region. For small &, a positive g (inward radial
acceleration in the lab frame) tends to stabilize the sausage mode, but destabilize the kink mode.
For large k, a positive g destabilizes both the kink and sausage mode. Using the ID-HYDRA simu-
lation results for an equilibrium model that includes a pre-existing axial magnetic field and a pre-
heated fuel, we identify several stages of MRT-sausage-kink mode evolution. We find that the
m =1 kink-MRT mode has-a higher growth rate at the initial stage and stagnation stage of the im-
plosion, and that the m =0 sausage-MRT mode dominates at the main part of implosion. This anal-
ysis also sheds light on a puzzling feature in Harris’ classic paper of MRT [E. G. Harris, Phys.
Fluids 5, 1057 (1962)]. An attempt is made to interpret the persistence of the observed helical struc-
tures [Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] in terms of non-axisymmetric eigenmode.

© 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4915520]

I. INTRODUCTION

When a strong axial current is present, the dominant
instabilities on a cylindrical plasma column are the sausage
and kink mode, with azimuthal mode numbers, m =0 and
m =1, respectively. If the plasma column is in the form of a
cylindrical liner of outer radius R and thickness A, the sau-
sage and kink mode are still the dominant modes if it is
assumed that there is a sufficient internal pressure in the cen-
tral region of the liner to prevent any radial acceleration of
the liner. However, if this internal pressure is weak, there
would be inward acceleration of the liner, and the outer inter-
face of the liner would be subjected to the magneto-
Rayleigh-Taylor instability (MRT).'™ If, on the other hand,
the internal pressure in the central region is very high, there
is a radially outward acceleration and the inner interface of
the cylindrical liner would be subjected to MRT. In the rest
frame of the interface, the effective gravity, g, is equal to the
negative of the radial acceleration. Thus, g >0 (g < 0) corre-
sponds to implosion (stagnation or explosion), and the con-
ventional sausage and - kink mode described above
correspond to g=0. It is clear that the nature of sausage,
kink, MRT, and the coupling among them depends much on
the cylindrical geometry, on the magnitude and sign of g, on
the aspect ratio, R/A, and on the dominant magnetic field. In
this paper, we use the ideal MHD model and present a gen-
eral linear stability analysis including the m=0 MRT-
sausage mode and the m =1 MRT-kink mode, for arbitrary
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value (and sign) of g, for arbitrary aspect ratio R/A (>1), and
for general values of the axial magnetic field outside, inside,
and within the liner.

The coupling of the m =0 MRT and sausage mode, and
the coupling of the m =1 MRT and kink mode, has received
only scant attention in the past.*”” They have become an im-
portant issue in the recent magnetized liner inertial fusion
(MagLIF) experiments®'* on the Z-machine at Sandia
National Laboratoeries. While there have been extensive stud-
ies of MRT on the MagLIF liner without an axial magnetic
ﬁeld,g_11 many of these MRT theories were based on a slab
geometry which is incapable of describing the conventional
sausage mode and kink mode.>*'>~'® Without an axial mag-
netic field, MRT structure is typically oriented along nearly
horizontal planes perpendicular to the z-axis with limited or
no pitch.'*'? However, with the inclusion of an axial mag-
netic field, helical structures were found with significant in-
clination during the implosion phase.'>"® In the fully
integrated MagLIF experiments (with axial magnetic field
and a preheated fuel in the central region inside the liner),
possible kink-like perturbations of the plasma column were
reported at stagnation.'* These non-axisymmetric MHD
activities are yet to be explained.

To keep the problem analytically tractable, we use ideal
MHD and apply a linear stability analysis on a sharp bound-
ary model (Fig. 1). For the linear stability analysis, we
assume (a) that the liner has a uniform and constant density,
the density elsewhere is practically zero in comparison, (b)
that there is a constant, uniform axial magnetic field in each
region, (c) that the azimuthal magnetic field, generated by

© 2015 AIP Publishing LLC
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FIG. 1. MHD model for an imploding cylindrical liner. Uniform axial mag-
netic field is included in each region: liner (a <r <R), its interior (r < a),
and its exterior (1 > R), as By, B3, and By, respectively.

the axial current (a surface current), exists only in the exte-
rior region (> R), (d) that R and A are constants, and (e)
that the effective gravity, g, is uniform and constant. These
assumptions may be justified if we pretend that the liner is
subjected to an instantaneous, initial inward acceleration
(= —g), so that the MRT mechanism is switched on, but
without creating any motion of the liner so that R, A, and the
liner density are essentially constants. Such a simplified con-
ceptual model enables a close examination of the relation
between a purely MRT mode (one without any internal pres-
sure to reduce the acceleration), and a purely sausage and
kink mode (one with g=0). In so doing, we are able to
resolve a little-noted puzzle in Harris’ classic paper which
shows that there is a finite MRT growth rate, y = \/g/R, for
a thin shell even when k =m =0, where R is the radius of the
thin shell and & is the axial wavenumber of the imploding
thin liner.* This is a surprising result because the MRT

growth rate is expected to be y = 4/ (k7 + kzz)l/ 2, and for m

and k equal to zero, we would have y =0. The nature of this
finite growth rate of Harris and its relation to the m =0 sau-
sage mode will be discussed.

In experiments, the axial current has a finite rise time.
Quantities such as the outer radius R, and g will then evolve
in time. In fact, the effective gravity g even changes sign from
implosion to stagnation. To obtain some rough understanding
of the relative importance of MRT, sausage, and kink, on a
liner like MagLIF, we use the HYDRA simulation code' to
examine the temporal evolution of a cylindrical liner with a
realistic current rise profile reaching ~20 MA in 150 ns, a pre-
seeded axial magnetic field of 10T, and a preheated fuel
(~250eV), similar to an ideal version of the fully integrated
MagLIF experiments by Gomez et al.'* From 1D HYDRA
simulations, we extract the instantaneous “equilibrium” pa-
rameters for R, A, g, By, Bos, etc., and apply these profiles to
the linear stability theory of the sharp boundary model. This
analysis, reported below, reveals several stages of evolution
of sausage, kink, and MRT, from implosion to stagnation.
Figure 5 below illustrates the relative importance of the m =0
and m = 1 modes at the different stages.

We shall first consider the equilibrium model (Fig. 1), in
which the internal pressure in each region is assumed to be
adjusted so that g may be assigned an arbitrary constant
value (zero, positive, or negative), for a given set of axial
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and azimuthal magnetic fields. The results of the stability
analysis for general m and k are presented. Numerical results
are presented only for the m =0 and m = 1 modes.

Il. EQUILIBRIUM AND STABILITY

The model under study is shown in Fig. 1. It consists of
three regions, I, II, and III. In each region, we assume that
the fluid is perfectly conducting. We solve the ideal MHD
equations: p(9/dt+v-V)v=-Vp+Jx B+ pgr, dp/ot
+V - (pv) =0,0B/0t=YV x (vxB),and V x B = 1,J in
the cylindrical coordinates. Here, p is the mass density, v is
the fluid velocity, p is the fluid pressure which is assumed to
be isotropic, J is the current density, B is the magnetic field,
g is the gravity which is positive when acceleration is radi-
ally inward [Fig. 1], r is the unit radial vector, and p is the
free space permeability.

In equilibrium, the magnetic field in the three regions, I
(r>R), Il (a<r<R),and IlI (r < @) is assumed to be, respec-
tively, B01 = ZBO] + eBgR/I‘, Boz = ZBOQ, and B03 = ZB03,
where By, Bga, Boz, and By are constants. We further assume
that the mass density in each region is also constant with the
liner density being the dominant, i.e., pg; < po2, and po3
< poo- For a scenario such as MagLlIF, region I is a vacuum
field region, region II is the liner region, and region III is the
fuel region. The equilibrium pressure profile po(r) is adjusted
so that it satisfies the equilibrium condition,20 for all r,

. 2 r
0 (po(r> +@> LBl e, (1

or 210 T'Ho

where By = |By| is the magnitude of the equilibrium magnetic
field By and Bgy(r) is the azimuthal component of By. We
assume that the effective gravity, g, is a constant, though fully
incompressible flow would require a non-uniform g to account
for cylindrical convergence and mass conservation consistently.
This may be justified if we use 1D HYDRA simulations to pro-
vide these equilibrium profiles, which fully take into account
compressibility of the fluid as it implodes. Also, the thickness
of the shell remains on the order of 100s of micrometers, which
is relatively thin so that the effect of non-uniform g remains
small. Integrate Eq. (1) across region II to yield

2

B
pur =+ 0
21

B}, + B}

, 2
2pg R

gpnA = |pr + -

where A=R — a is the liner thickness, p; is the equilibrium
fluid pressure in region I at the outer liner surface, and py; is
the equilibrium fluid pressure in region III at the inner liner
surface. The acceleration, which equals —g, may therefore
be driven by an arbitrary mix of fluid pressure (py;,py) or
magnetic pressure (Boi,Bos, By), as long as the above equi-
librium conditions are satisfied. Note that if the internal pres-
sure pyy is dominant among all pressures, as in the
stagnation stage, then g is negative (acceleration is radially
outward) in Eq. (2). Hereafter, we will call the case g=0
pure kink mode and pure sausage mode, i.e., the total pres-
sure exactly balances when there is no acceleration in the
laboratory frame. On the other hand, if one square bracket in
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Eq. (2) is much larger than the other square bracket, so that |g|
is maximized, we call the unstable mode pure MRT or pure
RT mode. In general, |g| is between zero and its maximum
value; and the resulting instability is somewhere between a
pure sausage (or kink) mode and a pure MRT mode.

We next consider a small signal perturbation of the
form, u; (r)e’™ "= on the equilibrium of the 3-region ge-
ometry shown in Fig. 1 and assume these perturbations to be
incompressible (V -v = 0). For the above sharp boundary
model, the linearized MHD equations for each region may be
distilled into a second order ODE for the perturbed displace-
ment of the plasma, the solution of which requires two bound-
ary conditions, plus constraint on the perturbed magnetic field:
(1) A perfect conductor (ideal MHD) requires that the mag-
netic field component normal to the liner surface to be identi-
cally zero, which links the perturbation magnetic field and
displacement and (2) The continuity of total pressure across
each interface. This leads to a dispersion relation of the form,

Aw* —Bw* +C =0, 3)
A = (XiX» + 1)/(X3k>aR), 4)
B =by + bs, 5)

C = KVL(KPVLA + b))
+ Vs (I /1) (=K VX /X5 + [k|g') +Kgg. (6)

/

A A~/ ~ A

In EqS. (4)—(6),X1 =K|m|1‘m| _I\m\K|m\’X2 :I\"I\K(m| —K|m|1‘/m‘,
A A/ ~

X3 :[\m\K\/m\ —K‘m‘[‘/m‘, [‘m‘ :I|m|(|k\a), K|m| =K|m‘ (|k|a), I‘m‘

=l ([KIR), K=K m|([KIR), by=2k*V{,A, by =—[(X1/X3)

Iklg" +(X2/X3)Iklg], Voo = /Bi/HoPozs Vo3 = v/ Bis/ HoPoas
§' =8+ /HopeR) B+ Ky /K,y [KIR)(~mBy+kRBor )
I,, and K, are, respectively, the modified Bessel function of
order m of the first and second kind, and a prime denotes dif-
ferentiation of these modified Bessel functions with respect to
their arguments. Of the four eigenvalues of o in the dispersion
relation (3), we shall henceforth consider only the most unsta-
ble mode with the largest negative imaginary part of w. This
is the exponentially growing mode, the second root is expo-
nentially decaying and the 3rd and 4th are purely oscillatory.
The numerical values of the growth rate, obtained from Eq.
(3), are presented below. They have all been validated with an
independent, alternative approach that directly solved the
governing differential equation including pg3 >0.

II. m =0 AND m =1 MODE WITH g = 0 AND
NONZERO g

The difference between a pure sausage mode, and a pure
MRT mode, both with m =0, is shown in Fig. 2(a), where
we have set the axial magnetic field equal to zero every-
where. We further assume that p; =0, and Eq. (2) then reads,

B
8PmA == pu- (7

02 210
For the pure sausage mode, we set p;; = B% /24y, so that
g =0. The normalized growth rate of this pure sausage mode
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is plotted by the solid lines in Fig. 2(a) for various aspect
ratios, from a thin shell (R/A =10) to an almost solid cylin-
der (R/A=1.0101). Note that for a thin liner, R/A > 1, the
pure sausage mode growth rate, y = —Im(w), approaches the
asymptotic limit for small kR,

B
Yy =4/————=, puresausagemode (kR < 1,R/A>1).
HoPo2 AR ( / )

(8)

Equation (8) may be derived from Eq. (3) in the asymptotic
limits shown, after setting g =0.

For the pure MRT mode, there is no internal pressure,
pir=20, in Eq. (7). There is then a maximum inward acceler-
ation, with a maximum g = gnax = B(% /21ppopA according
to Eq. (7). The normalized growth rate for this pure MRT
mode with m =0 is given by the dashed curves in Fig. 2(a).
Asymptotically, one may show from Eq. (3) that, for a thin
liner, R/A > 1, and small kR,

| B
y=1/=—"—, pureMRTmode (kR < 1,R/A>1).
2P AR /

€))

Equation (9) is identical to Eq. (61) of Harris* in the limit
k=0, m=0, thus confirming Harris’ finite MRT growth rate
in this limit for a collapsing thin shell. Note from Egs. (8) and
(9) that the pure MRT mode has a growth rate lower than the
pure sausage mode in the long axial wavelength limit. Since
the value of g ranges between g=0 and g= g,.x, We con-
clude that inward acceleration (g > 0) tends to stabilize the
long wavelength sausage mode, and this is even more appa-
rent in Fig. 2(a) for lower aspect ratios, R/A=2, and
R/A=1.0101. This is also true when B,/By=0.1, as shown
in Fig. 2(c). However, if the axial magnetic field is increased
to By,/Bgp=1 (Fig. 2(e)), the pure sausage mode is stable for
all R/A, and the inward acceleration destabilizes the pure sau-
sage mode for the R/A=10 case (and only for this case
among the values of R/A shown in Fig. 2(e)). Note that the
inward acceleration (g >0) tends to destabilize the short
wavelength m = 0,1 modes, when kR > 1. This result is impor-
tant when we consider the experiments of Sinars et al.>'* and
simulations and experiments of McBride e al."' where such
modes are observed. They show that while pre-seeded 7 =0
(k> 0) modes persist, retaining azimuthal symmetry, unmodi-
fied liners show a rapid departure from azimuthal symmetry.
One explanation with our theory is while the growth rate for
m=0 (k> 0) remains the largest, m > 0 and k > 0 modes have
comparable enough growth rates that, unless preseeded with
m =0, directly compete and destroy the m =0 symmetry. In
fact, to accurately simulate a typical unseeded liner, fully 3D
modes (m,k > 0) must be allowed (2D simulations are insuffi-
cient), though even this can be challenging'' and is discussed
briefly in the conclusion.

For the kink mode (m=1), an inward acceleration
(g>0) tends to destabilize the kink mode for long axial
wavelength (kR< 1), regardless of the value of By,/Byy=0,
0.1 or 1, as shown Figs. 2(b), 2(d), and 2(f). The curves with
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FIG. 2. The normalized growth rate calculated from Eq. (3) for (a), (c), (e), the m =0 mode, and (b), (d), (), the m =1 mode, with B(./By=0, 0.1, and 1, and R/
A=1.0101 (almost a solid cylinder), 2, and 10, where B, =B = Bg, = Bos. Here, g =0 corresponds to the pure sausage mode (m =0), or the pure kink mode
(m=1), and g = giax > 0 corresponds to the pure MRT mode for an imploding liner.

g=0 in Figs. 2(d) and 2(f) show disappearance of m=1
instability for sufficiently large kR. This only means that the
Kruskal-Shafranov criterion for kink mode stabilization is
satisfied for sufficiently large kR.*° Note that the inward
acceleration (g > 0) tends to destabilize the short wavelength
m =1 mode, when kR > 1.

To gain some understanding of the coupling between
MRT, sausage and kink mode at the stagnation stage, we
now assume that By; =B, is so small compared with B;

that we may now set By; = By, = 0. We further assume B3/
By = 1. The equilibrium condition, Eq. (2), then reads,

2P = pr —pur- (10

The pure sausage and pure kink mode assumes P; =P so
that g =0. Their normalized growth rates are shown by the
solid lines in Fig. 3(a) for m =0, and in Fig. 3(b) for m=1.
The pure MRT case assumes P; =0 in Eq. (10), and the nor-
malized growth rates are shown by the dotted lines in Fig. 3,
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FIG. 3. The normalized growth rate calculated from Eq. (3) for (a), the
m=0 mode, and (b), the m=1 mode, with By; =By, =0, and By3/By=1,
for R/A =1.0101 (almost solid cylinder), 2, and 10. Here, g =0 corresponds
to the pure sausage mode (m=0), or the pure kink mode (m=1), and
&= —|gmax| <0 corresponds to the pure MRT mode for an exploding liner
near its stagnation.

where we set pyj = —gmaxPooA = B3/ 1ty From Fig. 3, we
see that the radially outward acceleration (g < 0) destabilizes
only the thinnest liner for the sausage mode, while all thick-
nesses are destabilized for the kink mode. Overall, the m =1
MRT mode has a higher growth rate during this deceleration
phase with a highly compressed axial field. This may have
implications for MagLIF as we will discuss below.

We next calculate the instantaneous instability growth
rate for the m =0 and the m = 1 modes according to Eq. (3),
using the data from 1D HYDRA to obtain the instantaneous
equilibrium profiles. The m = —1 mode could also be unsta-
ble but in general has a smaller growth rate than m =0, 1 so
we focus on the more dangerous growth rate. Figure 4 shows
the evolution of By, By, Bos, By, &, R, a, poz, and pg3, for a
liner geometry and current profile similar to the fully inte-
grated MagLIF experiments of Gomez et al. (with pre-
magnetization of a 10 T axial magnetic field, and a preheated
fuel'*). These results are expected to be equally applicable to
the experiments of Awe ef al.,'*'? except for the decelera-
tion phase since the experiments by Gomez et al. included a
laser pre-heat. This allows stagnation at smaller convergence
ratio, a key feature of MagLIF. Figure 4 was extracted from

Phys. Plasmas 22, 032706 (2015)
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FIG. 4. (a) Evolution of magnetic fields and average liner acceleration,
a=—g, from 1D HYDRA simulations. (b) Liner trajectory and evolution of
the fuel and liner density from 1D HYDRA simulations. At t=0:
By;=Bp;=Bp;=10T,By=0T.

the HYDRA 1D simulations using the procedure outlined
elsewhere.'® Note from Fig. 4 that during the entire interval
of 148 ns, pg1 =0, pos <K poz and that g <0 only within the
last 7ns. The instantaneous instability growth rates for the
m=0 and the m =1 mode are compared in Fig. 5(a) as a
function of time, for various axial wavelengths 1 =2n/k. We
interpret Fig. 5(a) as follows, focusing on the A= 1 mm case.

For A =1mm, Fig. 5(a) shows that there are five (5) dif-
ferent stages of MRT-sausage-kink growth for the evolving
BO], B02, Bo3, Bg, g, R, a, £02 and Po3 shown in Flg 4. (l)
Initially, for the first 20 ns, the azimuthal magnetic field is
small compared with the pre-seeded axial magnetic field of
10T, both the m =0 and m =1 modes are stable. (ii) As the
azimuthal magnetic field increases, but is still less than the
axial magnetic field, the kink mode (7 = 1) becomes unsta-
ble but the sausage mode (m =0) remains stable. This stage
is very similar to a tokamak with a safety factor ¢ < 1, but
will quickly pass. (iii) As the azimuthal magnetic field is
increased further, from about 25 to 55 ns, both the kink and
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FIG. 5. (a) Relative dominance of sausage and kink modes for a MagLIF
like implosion. g >0 up until final 7 ns where it changes sign. Observed ex-
perimental axial wavelengths are on the order of 1 mm. (b) Magnification of
the last 7 ns, comparing the amplitude gain of the sausage and kink mode as
a function of wavelength. Stronger axial fields allow the kink mode to domi-
nate over shorter wavelengths.

sausage mode become unstable, but the kink mode is domi-
nant. This is not the case if there is no axial magnetic field.
Thus, the axial magnetic field gives a preference to the
growth of the kink mode if helical perturbations are present.
One might wonder if the subdominance of the 77 =0 mode in
these early stages has anything to do with the appearance of
the helical structures in Awe’s experiments.'>'* Early on,
MRT is not important because there is little inward accelera-
tion of the liner (g is small). Over the first 60 ns, the maxi-
mum number of e-folds is on the order of 1 for axial
wavelengths around 100 um, while wavelengths on the order
of 1 mm have undergone around 0.1 e-folds. Because we use
a sharp boundary model, the number of e-folds also depends
on the density used. Certainly, there will be some ablation
and it is difficult to tell whether the early time growth occurs
in the ablated plasma or the bulk, above we have used the
near-solid density which may underestimate growth. It is
also possible these modes collude with electrothermal insta-
bility which tends to occur for short wavelengths (<200 pm)
at these early times.>?2 (iv) As the azimuthal magnetic field
further increases much beyond the axial magnetic field (from
the current rise after 55 ns), both the m =0 and m =1 mode
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are unstable, but the m =0 mode becomes dominant. At this
point g is large, such that MRT is the dominant driver of
instability decreasing the e-folding time substantially. This
situation remains for the major part of the implosion, all the
way until the fuel region is heated up to such a high pressure
that the sign of radial acceleration reverses, and the stagna-
tion stage begins. (v) During the deceleration stage (stagna-
tion) in the last 7ns of the simulation, both the m =0 and
m =1 modes are unstable, but the m = 1, kink-like mode has
a higher total amplitude gain than the m =0 mode during
this final stage. Figure 5(b) shows that the kink mode’s am-
plitude gain is about three times that of the sausage mode
during this final stage if A= 1mm. Thus, if helical structure
has fed-through the liner and seeded the inner surface, this
could generate substantial helical growth within the fuel/
liner inner surface during the deceleration phase. In fact,
from Fig. 3(b), the pure deceleration-MRT m = 1 mode exhib-
its a growth rate with complete lack of dependence on wave-
length except for an upper wavenumber cutoff k.. (short
wavelength). This would suggest that the dominant kink-like
perturbation near stagnation will correspond to the most
strongly-seeded kink-like liner deformation during run-in.

Finally, we note that the instability growth rates pre-
sented above are also in excellent agreement with the bench-
mark MRT data in Sinars ez al.”'® Experiments showing the
growth of seeded m =0, 4, =400 um modes were presented
which also compared very favorably with planar growth
rates'®'® since kR was large. The m =0 modes are fairly
straightforward to verify via 2D simulations and also in
experiments, however 3D perturbations are much more
difficult to investigate. As such, growth rates with m # 0 and
k < 0 could hopefully be used to benchmark 3D simulation
codes, of which there are very few tests.

IV. CONCLUDING REMARKS

This paper concentrates on the cylindrical effects of the
stability of a current-carrying liner of various aspect ratios,
from a thin liner to a solid cylinder. We focused mainly on
the m =0 and m = 1 modes and on the effect of radial accel-
eration on the liner stability. When the radial acceleration is
negligible, as is the case during the initial axial current rise,
the sausage mode is dominant without an axial magnetic
field, but the kink mode is dominant with a pre-seeded axial
magnetic field. During the main part of the implosion, the
m =0 mode grows faster than the m = 1 mode. At the stagna-
tion stage where the radial acceleration changes sign, the
m=1 MRT-kink mode grows faster than the m =0 MRT-
sausage mode for shorter wavelengths (~1 mm) when there
is a pre-seeded axial magnetic field.

The intricate interplay between the m=0 and m=1
modes, which also depends on the magnitude and sign of g,
makes the interpretation of the helical structure observed by
Awe et al.'*" and the apparent kink-like activities in
Gomez et al.'* difficult. Most questions on them remain
unanswered. Among them include the sharpness of helical
structures, the underlying reasons for the observed mode
numbers (m, k), the role of initial seeding, the origin and
maintenance of the helical structures, and their relation (if
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any) to the kink-like mode that seems to have shown up at
the final stage in the liner experiment of Gomez et al.'* Our
analysis does show that if helical perturbations are present
on the liner surface, the axial magnetic field opens a window
for the kink to grow instead of the sausage mode.

Despite the uncertainties, one puzzle on the experiment
of Awe et al.,'*'? namely, why the helical structures opened
up (instead of very tightly wound up as the azimuthal mag-
netic field increases; see Fig. 4(a)) may be explained in terms
of an eigenmode with a specific m and k. The axial wave-
number, k, is assumed to be constant. The frames in the
experiment of Awe et al .,12’13 occur over a narrow time win-
dow so this seems adequate. The pitch angle of the helix, ¢,
of the eigenmode is given by ¢ = tan~!(m/kR) ~ m/kR,
relating the values of ¢(t2) and ¢(t1) at different times t2
and tl: ¢(12) = ¢(r1) x R(¢1)/R(¢2). For the Z-Machine
Shot 2480, the measured (mean) values are ¢(71) = 16.4°,
a(tl) =870 um, a(2) =365 um. We then have, R(r1) =
a(rl) +A =870 um + 465 yum = 1335 um, and R(12) =
365 um +465 um = 830 um, where we have assumed that
the liner thickness A = 465 um remains unchanged through-
out (see Fig. 4(b) and Awe et al.'*'), The predicted helix
pitch angle at 2 is then ¢(2) = 16.4° x 1335/830 = 26.4°,
which is quite close to the observed mean value of
¢(12) = 25.6°. Using this technique, the predicted value for
¢(#2) in Shot 2481 is within the experimental uncertainties
of the measured value also. This interpretation of the persist-
ence of helical structures was motivated by the density wave
theory that also used eigenmodes to explain the persistence
of spiral structures in disk galaxies despite strong differential
rotation.”® Reproduction of the experimentally observed heli-
cal structures from simulations, without artificial seeding,
has proved very challenging. 3D MHD simulations have
required initial seeding of a helix to reproduce the observed
helical structure; it has not simply arisen out of white
noise.'® Unfortunately, this seeding has also produced helical
structure when no axial magnetic field is present which is not
in line with experimental results. The sharpness of the heli-
ces and very specific mode numbers (in m and k) that were
observed present the biggest challenge in comparing
(unseeded) 3D simulations and experiments.
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